β2-Integrin and Notch-1 differentially regulate CD34 +CD31+ cell plasticity in vascular niches

Yu Tsung Shih, Mei Cun Wang, Tung Lin Yang, Jing Zhou, Ding Yu Lee, Pei Ling Lee, Shaw Fang Yet, Jeng Jiann Chiu

研究成果: 雜誌貢獻文章同行評審

8 引文 斯高帕斯(Scopus)

摘要

Aims The implication of circulating haematopoietic CD34+ progenitors in the vasculature is unclear due to the lack of understanding of their characteristics and plasticity mediated by their cellular microenvironment. We investigated how vascular smooth muscle cells (SMCs) and their interactions with endothelial cells (ECs) affect the behaviour and plasticity of CD34+CD31+ progenitors and the underlying mechanisms.Methods and resultsHuman peripheral blood-derived CD34 +CD31+ cells were directly transplanted into injured arteries in vivo and co-cultured with ECs and SMCs in vitro. CD34 +CD31+ progenitors injected into wire-injured mouse arteries differentiate into ECs and macrophages in the neoendothelial layer and neointima, respectively. SMC-co-culture increases CD34+CD31 + cell mobility and adhesion to and transmigration across ECs. Sorted CD34+CD31+ progenitors that adhered to ECs co-cultured with SMCs have the capacity to form capillary-like structures in Matrigel and chimeric blood vessels in vivo. Sorted transmigrated progenitors give rise to macrophages with increased pro-angiogenic activity. These differentiations of CD34+CD31+ progenitors into ECs and macrophages are mediated by β2-integrin and Notch-1, respectively. β2-Integrin and Notch-1 are activated by their counterligands, intercellular adhesion molecule-1 (ICAM-1) and jagged-1, which are highly expressed in the neoendothelium and neointima in injured arteries. Intra-arterial injection of β2-integrin-activated CD34 +CD31+ progenitors into wire-injured mouse arteries inhibits neointima formation.ConclusionOur findings indicate that the peripheral vascular niches composed of ECs and SMCs may predispose haematopoietic CD34+CD31+ progenitors to differentiate into ECs and macrophages through the activations of the ICAM-1/β2-integrin and jagged-1/Notch-1 cascades, respectively.

原文英語
頁(從 - 到)296-307
頁數12
期刊Cardiovascular Research
96
發行號2
DOIs
出版狀態已發佈 - 11月 1 2012
對外發佈

ASJC Scopus subject areas

  • 生理學
  • 心臟病學與心血管醫學
  • 生理學(醫學)

指紋

深入研究「β2-Integrin and Notch-1 differentially regulate CD34 +CD31+ cell plasticity in vascular niches」主題。共同形成了獨特的指紋。

引用此