TY - JOUR
T1 - β-Carotene and canthaxanthin alter the pro-oxidation and antioxidation balance in rats fed a high-cholesterol and high-fat diet
AU - Shih, Chun Kuang
AU - Chang, Jui Hung
AU - Yang, Shwu Huey
AU - Chou, Tsui Wei
AU - Cheng, Hsing-Hsien
PY - 2008/1
Y1 - 2008/1
N2 - This study investigated the effects of β-carotene and canthaxanthin on lipid peroxidation and antioxidative enzyme activities in rats fed a high-cholesterol, high-fat diet. Wistar rats were divided into six groups. Negative control group (group NC) received a high-fat (150 g/kg) diet; cholesterol control group (group CC) received a high-cholesterol (10 g/kg), high-fat diet. The other four groups were fed a high-cholesterol, high-fat diet supplemented with crystal β-carotene (group BC), β-carotene beadlet (group BB), canthaxanthin beadlet (group CX) or α-tocopherol (group AT). Blood and livers were collected for analysis after 6 weeks of feeding. Group BB had significantly lower hepatic thiobarbituric acid reactive substance (TBARS) and conjugated diene concentrations, whereas group CX had a significantly lower plasma TBARS concentration than did group CC. In erythrocytes, glutathione peroxidase activities were significantly greater in groups BC, BB and CX than in group CC. Moreover, compared with group CC, catalase activities were significantly greater in groups BB and CX, and superoxide dismutase (SOD) activity was significantly greater in group BB. In livers, SOD activities were significantly greater in groups BC, BB and CX, and glutathione reductase activities were significantly greater in groups BB and CX than in group CC. Compared with group CC, hepatic retinol and α-tocopherol concentrations were significantly greater in groups BC, BB and CX, whereas plasma and hepatic cholesterol concentrations were significantly lower in group BC. These findings suggest that β-carotene and canthaxanthin altered the pro-oxidation and antioxidation balance and suppressed cholesterol-induced oxidative stress via modulation of antioxidant system and cholesterol metabolism.
AB - This study investigated the effects of β-carotene and canthaxanthin on lipid peroxidation and antioxidative enzyme activities in rats fed a high-cholesterol, high-fat diet. Wistar rats were divided into six groups. Negative control group (group NC) received a high-fat (150 g/kg) diet; cholesterol control group (group CC) received a high-cholesterol (10 g/kg), high-fat diet. The other four groups were fed a high-cholesterol, high-fat diet supplemented with crystal β-carotene (group BC), β-carotene beadlet (group BB), canthaxanthin beadlet (group CX) or α-tocopherol (group AT). Blood and livers were collected for analysis after 6 weeks of feeding. Group BB had significantly lower hepatic thiobarbituric acid reactive substance (TBARS) and conjugated diene concentrations, whereas group CX had a significantly lower plasma TBARS concentration than did group CC. In erythrocytes, glutathione peroxidase activities were significantly greater in groups BC, BB and CX than in group CC. Moreover, compared with group CC, catalase activities were significantly greater in groups BB and CX, and superoxide dismutase (SOD) activity was significantly greater in group BB. In livers, SOD activities were significantly greater in groups BC, BB and CX, and glutathione reductase activities were significantly greater in groups BB and CX than in group CC. Compared with group CC, hepatic retinol and α-tocopherol concentrations were significantly greater in groups BC, BB and CX, whereas plasma and hepatic cholesterol concentrations were significantly lower in group BC. These findings suggest that β-carotene and canthaxanthin altered the pro-oxidation and antioxidation balance and suppressed cholesterol-induced oxidative stress via modulation of antioxidant system and cholesterol metabolism.
KW - Antioxidation
KW - Canthaxanthin
KW - Cholesterol
KW - Pro-oxidation
KW - β-Carotene
UR - http://www.scopus.com/inward/record.url?scp=37349018634&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=37349018634&partnerID=8YFLogxK
U2 - 10.1017/S0007114507781497
DO - 10.1017/S0007114507781497
M3 - Article
C2 - 17640418
AN - SCOPUS:37349018634
SN - 0007-1145
VL - 99
SP - 59
EP - 66
JO - British Journal of Nutrition
JF - British Journal of Nutrition
IS - 1
ER -