Monocyte Chemoattractant Protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma

  • Ju-Fang Liu (Contributor)
  • Po Chun Chen (Contributor)
  • Tsung Ming Chang (Contributor)
  • Chun-Han Hou (Contributor)



Abstract Background Osteosarcoma is generally reported among younger individuals and has a very poor prognosis, particularly for the development of metastasis. However, more effective metastatic biomarkers and therapeutic methods are absent. Monocyte chemoattractant protein-1 (MCP-1) is involved in cancer progression and inflammatory recruitment. Although previous studies have reported higher serum MCP-1 levels in patients with osteosarcoma, the role of MCP-1 in osteosarcoma progression remains to be addressed. Methods The osteosarcoma cell migratory ability was assessed by transwell migration assay. The MCP-1 and MMP-9 expression levels were analyzed by Western blot and qPCR. The signal activation was conducted by Western blot. The in vivo mouse experiment and tumor tissue array were performed to confirm our findings in vitro. Results The present study demonstrates that MCP-1 regulates cell mobility through matrix metalloproteinase (MMP)-9 expression in osteosarcoma cells. Moreover, MCP-1 promotes MMP-9 expression, cell migration, and cell invasion by mediating CCR2, c-Raf, MAPK, and AP-1 signal transduction. Using MCP-1 knockdown stable cell lines, we found that MCP-1 knockdown reduces MMP-9 expression and cell mobility. Finally, we found high MCP-1 expression levels in osteosarcoma specimens. Conclusions Our results provide prognostic value of MCP-1 in osteosarcoma by promoting MMP-9 expression.