TY - JOUR
T1 - Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression
AU - Huang, Yen Sung
AU - Chang, Che Chang
AU - Lee, Szu Shuo
AU - Jou, Yuh Shan
AU - Shih, Hsiu Ming
PY - 2016
Y1 - 2016
N2 - Long noncoding RNAs (lncRNAs) dysregulated in cancer potentially play oncogenic or tumor-suppressive roles. While the X inactivate-specific transcript (Xist) lncRNA is important for X-chromosome inactivation in female cells, very little is known about the role of Xist in human breast cancer in modulating cellular pathway(s). Here, we show that Xist expression is significantly reduced in breast tumor samples and cancer cell lines. Xist knockdown or overexpression resulted in increased or decreased levels, respectively, of AKT phosphorylation and cell viability. Further studies revealed an inverse correlation between Xist and phospho-AKT levels in breast cancer samples. Additionally, Xist knockdown-elicited increase of cell viability was attenuated by AKT inhibitor. These results suggest that Xist negatively regulates cell viability via inhibition of AKT activation. Interestingly, decreased Xist expression in breast cancer samples was associated with reduced levels of Jpx RNA, an lncRNA that positively regulates Xist promoter activity. Accordingly, Jpx knockdown enhanced AKT activation and cell viability. We also demonstrate that knockdown of Xist or SPEN, an intermediator protein to link Xist, SMRT co-repressor and HDAC3 complexes for X-chromosome inactivation, decreased expression of PHLPP1, a phosphatase to remove AKT phosphorylation, via increased HDAC3 recruitment to the PHLPP1 promoter, correlating with increased AKT phosphorylation. Our findings elucidate the tumor suppressor role of Xist in breast cancer and provide the molecular basis of Xist in downregulating AKT activation.
AB - Long noncoding RNAs (lncRNAs) dysregulated in cancer potentially play oncogenic or tumor-suppressive roles. While the X inactivate-specific transcript (Xist) lncRNA is important for X-chromosome inactivation in female cells, very little is known about the role of Xist in human breast cancer in modulating cellular pathway(s). Here, we show that Xist expression is significantly reduced in breast tumor samples and cancer cell lines. Xist knockdown or overexpression resulted in increased or decreased levels, respectively, of AKT phosphorylation and cell viability. Further studies revealed an inverse correlation between Xist and phospho-AKT levels in breast cancer samples. Additionally, Xist knockdown-elicited increase of cell viability was attenuated by AKT inhibitor. These results suggest that Xist negatively regulates cell viability via inhibition of AKT activation. Interestingly, decreased Xist expression in breast cancer samples was associated with reduced levels of Jpx RNA, an lncRNA that positively regulates Xist promoter activity. Accordingly, Jpx knockdown enhanced AKT activation and cell viability. We also demonstrate that knockdown of Xist or SPEN, an intermediator protein to link Xist, SMRT co-repressor and HDAC3 complexes for X-chromosome inactivation, decreased expression of PHLPP1, a phosphatase to remove AKT phosphorylation, via increased HDAC3 recruitment to the PHLPP1 promoter, correlating with increased AKT phosphorylation. Our findings elucidate the tumor suppressor role of Xist in breast cancer and provide the molecular basis of Xist in downregulating AKT activation.
KW - AKT
KW - Breast cancer
KW - HDAC3
KW - LncRNA
KW - Xist
UR - http://www.scopus.com/inward/record.url?scp=84978698535&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978698535&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.9673
DO - 10.18632/oncotarget.9673
M3 - Article
C2 - 27248326
AN - SCOPUS:84978698535
SN - 1949-2553
VL - 7
SP - 43256
EP - 43266
JO - Oncotarget
JF - Oncotarget
IS - 28
ER -