TY - JOUR
T1 - Xanthine oxidase inhibition study of isolated secondary metabolites from Dolichandrone spathacea (Bignoniaceae)
T2 - In vitro and in silico approach
AU - Nguyen, Dang Khoa
AU - Liu, Ta Wei
AU - Hsu, Su Jung
AU - Huynh, Quoc Dung Tran
AU - Thi Duong, Truc Ly
AU - Chu, Man Hsiu
AU - Wang, Yun Han
AU - Vo, Thanh Hoa
AU - Lee, Ching Kuo
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/4
Y1 - 2024/4
N2 - Xanthine oxidase (XO) has been widely recognized as a pivotal enzyme in developing hyperuricemia, primarily contributing to the excessive production of uric acid during purine metabolism in the liver. One of the standard treatment approaches involves reducing uric acid levels by inhibiting XO activity. In this study, the leaf extract of Dolichandrone spathacea, traditionally used in folk medicine, was found to inhibit XO activity in the ethyl acetate and butanol fractions at a concentration of 100 µg/mL, their values were 78.57 ± 3.85 % (IC50 = 55.93 ± 5.73 µg/ml) and 69.43 ± 8.68 % (IC50 = 70.17 ± 7.98 µg/ml), respectively. The potential XO inhibitory components were isolated by bioactivity assays and the HR-ESI-MS and NMR spectra system. The main constituents of leaf extracts of Dolichandrone spathacea, six compounds, namely trans-4-methoxycinnamic acid (3), trans-3,4-dimethoxycinnamic acid (4), p-coumaric acid (5), martynoside (6), 6-O-(p-methoxy-E-cinnamoyl)-ajugol (7), and scolymoside (17), were identified as potent XO inhibitors with IC50 values ranging from 19.34 ± 1.63 μM to 64.50 ± 0.94 μM. The enzyme kinetics indicated that compounds 3–5, 7, and 17 displayed competitive inhibition like allopurinol, while compound 6 displayed a mixed-type inhibition. Computational studies corroborated these experimental results, highlighting the interactions between potential metabolites and XO enzyme. The hydrogen bonds played crucial roles in the binding interaction, especially, scolymoside (17) forms a hydrogen bond with Mos3004, exhibited the lowest binding energy (−18.3286 kcal/mol) corresponding to the lowest IC50 (19.34 ± 1.63 μM). Furthermore, nine compounds were isolated for the first time from this plant. In conclusion, Dolichandrone spathacea and its constituents possess the potential to modulate the xanthine oxidase enzyme involved in metabolism.
AB - Xanthine oxidase (XO) has been widely recognized as a pivotal enzyme in developing hyperuricemia, primarily contributing to the excessive production of uric acid during purine metabolism in the liver. One of the standard treatment approaches involves reducing uric acid levels by inhibiting XO activity. In this study, the leaf extract of Dolichandrone spathacea, traditionally used in folk medicine, was found to inhibit XO activity in the ethyl acetate and butanol fractions at a concentration of 100 µg/mL, their values were 78.57 ± 3.85 % (IC50 = 55.93 ± 5.73 µg/ml) and 69.43 ± 8.68 % (IC50 = 70.17 ± 7.98 µg/ml), respectively. The potential XO inhibitory components were isolated by bioactivity assays and the HR-ESI-MS and NMR spectra system. The main constituents of leaf extracts of Dolichandrone spathacea, six compounds, namely trans-4-methoxycinnamic acid (3), trans-3,4-dimethoxycinnamic acid (4), p-coumaric acid (5), martynoside (6), 6-O-(p-methoxy-E-cinnamoyl)-ajugol (7), and scolymoside (17), were identified as potent XO inhibitors with IC50 values ranging from 19.34 ± 1.63 μM to 64.50 ± 0.94 μM. The enzyme kinetics indicated that compounds 3–5, 7, and 17 displayed competitive inhibition like allopurinol, while compound 6 displayed a mixed-type inhibition. Computational studies corroborated these experimental results, highlighting the interactions between potential metabolites and XO enzyme. The hydrogen bonds played crucial roles in the binding interaction, especially, scolymoside (17) forms a hydrogen bond with Mos3004, exhibited the lowest binding energy (−18.3286 kcal/mol) corresponding to the lowest IC50 (19.34 ± 1.63 μM). Furthermore, nine compounds were isolated for the first time from this plant. In conclusion, Dolichandrone spathacea and its constituents possess the potential to modulate the xanthine oxidase enzyme involved in metabolism.
KW - Dolichandrone spathacea
KW - Enzyme kinetics
KW - Hyperuricemia
KW - Molecular docking
KW - Phytochemicals
KW - Xanthine oxidase inhibitors
UR - http://www.scopus.com/inward/record.url?scp=85186399850&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85186399850&partnerID=8YFLogxK
U2 - 10.1016/j.jsps.2024.101980
DO - 10.1016/j.jsps.2024.101980
M3 - Article
AN - SCOPUS:85186399850
SN - 1319-0164
VL - 32
JO - Saudi Pharmaceutical Journal
JF - Saudi Pharmaceutical Journal
IS - 4
M1 - 101980
ER -