TY - JOUR
T1 - Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations
T2 - An alternative pathway to non-small-cell lung cancer
AU - Wang, Yu Chien
AU - Lin, Ruo Kai
AU - Tan, Yi Hung
AU - Chen, Jung Ta
AU - Chen, Chih Yi
AU - Wang, Yi Ching
PY - 2005/1/1
Y1 - 2005/1/1
N2 - Purpose: We found a relatively reduced frequency of p53 mutation with a much greater frequency of p53 protein overexpression, which reflected stabilization of p53 protein in the absence of p53 gene mutation. Therefore, we investigated the possibility of alternative mechanisms leading to p53 protein stabilization. Patients and Methods: We performed gene and protein alteration studies on p53 and its upstream effectors, MDM2 and p14ARF, in tumors from 94 non-small-cell lung cancer (NSCLC) patients. Results: lmmunohistochemical and sequencing analyses indicated that 37 tumors showed overexpression of wild-type p53. An absence of nuclear staining of MDM2 protein was found in 95% of these tumors (35 of 37; P < .001). The tumors with negative MDM2 staining showed a significantly high concordance of loss of Akt activity and low MDM2 mRNA expression (P < .001). Sequencing analysis revealed five distinct MDM2 splicing variants disrupting the conserved p53 binding domain. Corresponding variant proteins were detected in three lung cancer cell lines using the Western blot analysis. Our results also indicated that among the tumors with overexpression of the wild-type p53, 92% (34 of 37) showed immunoreactivity to p14ARF (P = .001). In addition, the deregulation of p53 and MDM2 genes was significantly associated with squamous lung cancer (P < .05) and was correlated with advanced stages (P < .05) and poor prognosis (P < .05). Conclusion: Our data suggest that immunopositivity of p14ARF together with a low expression of MDM2 contributes to accumulation of the wild-type p53, and that deregulation of the p53-MDM2-p14ARF pathway is important in the pathogenesis and outcome of a subset of NSCLC.
AB - Purpose: We found a relatively reduced frequency of p53 mutation with a much greater frequency of p53 protein overexpression, which reflected stabilization of p53 protein in the absence of p53 gene mutation. Therefore, we investigated the possibility of alternative mechanisms leading to p53 protein stabilization. Patients and Methods: We performed gene and protein alteration studies on p53 and its upstream effectors, MDM2 and p14ARF, in tumors from 94 non-small-cell lung cancer (NSCLC) patients. Results: lmmunohistochemical and sequencing analyses indicated that 37 tumors showed overexpression of wild-type p53. An absence of nuclear staining of MDM2 protein was found in 95% of these tumors (35 of 37; P < .001). The tumors with negative MDM2 staining showed a significantly high concordance of loss of Akt activity and low MDM2 mRNA expression (P < .001). Sequencing analysis revealed five distinct MDM2 splicing variants disrupting the conserved p53 binding domain. Corresponding variant proteins were detected in three lung cancer cell lines using the Western blot analysis. Our results also indicated that among the tumors with overexpression of the wild-type p53, 92% (34 of 37) showed immunoreactivity to p14ARF (P = .001). In addition, the deregulation of p53 and MDM2 genes was significantly associated with squamous lung cancer (P < .05) and was correlated with advanced stages (P < .05) and poor prognosis (P < .05). Conclusion: Our data suggest that immunopositivity of p14ARF together with a low expression of MDM2 contributes to accumulation of the wild-type p53, and that deregulation of the p53-MDM2-p14ARF pathway is important in the pathogenesis and outcome of a subset of NSCLC.
UR - http://www.scopus.com/inward/record.url?scp=16644396297&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=16644396297&partnerID=8YFLogxK
U2 - 10.1200/JCO.2005.03.139
DO - 10.1200/JCO.2005.03.139
M3 - Article
C2 - 15625370
AN - SCOPUS:16644396297
SN - 0732-183X
VL - 23
SP - 154
EP - 164
JO - Journal of Clinical Oncology
JF - Journal of Clinical Oncology
IS - 1
ER -