USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity

Ching Hui Lin, Hung Shu Chang, Winston C.Y. Yu

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

HPV-16E7 is a major transforming protein, which has been implicated in the development of cervical cancer. The stability of E7 is thus important to ensure its fully functional status. Using the yeast two-hybrid system, we found that USP11 (ubiquitin-specific protease 11), a member of a protein family that cleaves polyubiquitin chains and/or ubiquitin precursors, interacts and forms a specific complex with HPV-16E7. Our results indicate that the USP11 can greatly increase the steady state level of HPV-16E7 by reducing ubiquitination and attenuating E7 degradation. In contrast, a catalytically inactive mutant of USP11 abolished the deubiquitinating ability and returned E7 to a normal rate of degradation. Moreover, USP11 not only protected E7 from ubiquitination but also influenced E7 function as a modulator of cell growth status. These results suggest that USP11 plays an important role in regulating the levels of E7 protein and subsequently affects the biological function of E7 as well as its contribution to cell transformation by HPV-16E7.

Original languageEnglish
Pages (from-to)15681-15688
Number of pages8
JournalJournal of Biological Chemistry
Volume283
Issue number23
DOIs
Publication statusPublished - Jun 6 2008
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity'. Together they form a unique fingerprint.

Cite this