Using anti-malondialdehyde modified peptide autoantibodies to import machine learning for predicting coronary artery stenosis in taiwanese patients with coronary artery disease

Yu Cheng Hsu, I. Jung Tsai, Hung Hsu, Po Wen Hsu, Ming Hui Cheng, Ying Li Huang, Jin Hua Chen, Meng Huan Lei, Ching Yu Ling

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Machine learning (ML) algorithms have been applied to predicting coronary artery disease (CAD). Our purpose was to utilize autoantibody isotypes against four different unmodified and malondialdehyde (MDA)-modified peptides among Taiwanese with CAD and healthy controls (HCs) for CAD prediction. In this study, levels of MDA, MDA-modified protein (MDA-protein) adducts, and autoantibody isotypes against unmodified peptides and MDA-modified peptides were measured with enzyme-linked immunosorbent assay (ELISA). To improve the performance of ML, we used decision tree (DT), random forest (RF), and support vector machine (SVM) coupled with five-fold cross validation and parameters optimization. Levels of plasma MDA and MDA-protein adducts were higher in CAD patients than in HCs. IgM anti-IGKC76–99 MDA and IgM anti-A1AT284–298 MDA decreased the most in patients with CAD compared to HCs. In the experimental results of CAD prediction, the decision tree classifier achieved an area under the curve (AUC) of 0.81; the random forest classifier achieved an AUC of 0.94; the support vector machine achieved an AUC of 0.65 for differentiating between CAD patients with stenosis rates of 70% and HCs. In this study, we demonstrated that autoantibody isotypes imported into machine learning algorithms can lead to accurate models for clinical use.

Original languageEnglish
Article number961
JournalDiagnostics
Volume11
Issue number6
DOIs
Publication statusPublished - Jun 2021

Keywords

  • Autoantibody isotype
  • Cardiovascular disease
  • Malondialdehyde
  • Plasma

ASJC Scopus subject areas

  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'Using anti-malondialdehyde modified peptide autoantibodies to import machine learning for predicting coronary artery stenosis in taiwanese patients with coronary artery disease'. Together they form a unique fingerprint.

Cite this