TY - JOUR
T1 - Use of atorvastatin to inhibit hypoxia-induced myocardin expression
AU - Chiu, Chiung Zuan
AU - Wang, Bao Wei
AU - Shyu, Kou Gi
N1 - Funding Information:
This work was supported by 973 project 2013CB329000, National Science and Technology Major Project (2011ZX03003-003-01, 2013ZX03003013-003) and National Natural Science Foundation of China (No.61373026, 61261160501, 61271269)
PY - 2012/5
Y1 - 2012/5
N2 - Background Hypoxia induces the formation of reactive oxygen species (ROS), myocardin expression and cardiomyocyte hypertrophy. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been demonstrated to have both antioxidant and antihypertrophic effects. We evaluated the pathways of atorvastatin in repressing ROS and myocardin after hypoxia to prevent cardiomyocyte hypertrophy. Materials and methods Cultured rat neonatal cardiomyocytes were subjected to hypoxia, and the expression of myocardin and ROS were evaluated. Different signal transduction inhibitors, atorvastatin and N-acetylcysteine (NAC) were used to identify the pathways that inhibited myocardin expression and ROS. Electrophoretic motility shift assay (EMSA) and luciferase assay were used to identify the binding of myocardin/serum response factor (SRF) and transcription to cardiomyocytes. Cardiomyocyte hypertrophy was assessed by 3H-proline incorporation assay. Results Myocardin expression after hypoxia was inhibited by atorvastatin, RhoA/Rho kinase inhibitor (Y27632), extracellular signal-regulated kinase (ERK) small interfering RNA (siRNA)/ERK pathway inhibitor (PD98059), myocardin siRNA and NAC. Bindings of myocardin/SRF, transcription of myocardin/SRF to cardiomyocytes, presence of myocardin in the nuclei of cardiomyocytes and protein synthesis after hypoxia were identified by EMSA, luciferase assay, confocal microscopy and 3H-proline assay and were suppressed by atorvastatin, Y27632, PD98059 and NAC. Conclusions Hypoxia in neonatal cardiomyocytes increases myocardin expression and ROS to cause cardiomyocyte hypertrophy, which can be prevented by atorvastatin by suppressing ROS and myocardin expression.
AB - Background Hypoxia induces the formation of reactive oxygen species (ROS), myocardin expression and cardiomyocyte hypertrophy. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been demonstrated to have both antioxidant and antihypertrophic effects. We evaluated the pathways of atorvastatin in repressing ROS and myocardin after hypoxia to prevent cardiomyocyte hypertrophy. Materials and methods Cultured rat neonatal cardiomyocytes were subjected to hypoxia, and the expression of myocardin and ROS were evaluated. Different signal transduction inhibitors, atorvastatin and N-acetylcysteine (NAC) were used to identify the pathways that inhibited myocardin expression and ROS. Electrophoretic motility shift assay (EMSA) and luciferase assay were used to identify the binding of myocardin/serum response factor (SRF) and transcription to cardiomyocytes. Cardiomyocyte hypertrophy was assessed by 3H-proline incorporation assay. Results Myocardin expression after hypoxia was inhibited by atorvastatin, RhoA/Rho kinase inhibitor (Y27632), extracellular signal-regulated kinase (ERK) small interfering RNA (siRNA)/ERK pathway inhibitor (PD98059), myocardin siRNA and NAC. Bindings of myocardin/SRF, transcription of myocardin/SRF to cardiomyocytes, presence of myocardin in the nuclei of cardiomyocytes and protein synthesis after hypoxia were identified by EMSA, luciferase assay, confocal microscopy and 3H-proline assay and were suppressed by atorvastatin, Y27632, PD98059 and NAC. Conclusions Hypoxia in neonatal cardiomyocytes increases myocardin expression and ROS to cause cardiomyocyte hypertrophy, which can be prevented by atorvastatin by suppressing ROS and myocardin expression.
KW - Cardiomyocyte hypertrophy
KW - Reactive oxygen species
KW - Statins
KW - Transcription
UR - http://www.scopus.com/inward/record.url?scp=84859717095&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859717095&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2362.2011.02628.x
DO - 10.1111/j.1365-2362.2011.02628.x
M3 - Article
C2 - 22129233
AN - SCOPUS:84859717095
SN - 0014-2972
VL - 42
SP - 564
EP - 571
JO - European Journal of Clinical Investigation
JF - European Journal of Clinical Investigation
IS - 5
ER -