Abstract

Cross section area (CSA) of spinal canal has been a crucial indicator for lumbar spinal stenosis (LSS), which remains the leading preoperative diagnosis for elder people. Recently, the machine learning algorithms have been investigated in[7-10] for automatic classification systems. The methods investigated in[7-10] exploited the characteristics of cerebrospinal fluid (CSF) in T1 and T2 sequences of MRI images. Nevertheless, in order to apply the trained classifiers, the differences among images need to be as small as possible due to the nature of classification. To address the issue, this paper reinvented the wheel to propose unsupervised segmentation method without requirement of training process. Based on the characteristic property of skewness, the proposed algorithm can also distinguish the finer details such as nerve roots from CSF. The experimental study further demonstrated the benefits of proposed framework.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3827-3832
Number of pages6
ISBN (Electronic)9781538666500
DOIs
Publication statusPublished - Jan 16 2019
Event2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018 - Miyazaki, Japan
Duration: Oct 7 2018Oct 10 2018

Publication series

NameProceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018

Conference

Conference2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
Country/TerritoryJapan
CityMiyazaki
Period10/7/1810/10/18

Keywords

  • Cerebro spinal Fluid
  • Lumbar spinal stenosis
  • Magnetic resonance image
  • Measure of skewness
  • Segmentation
  • Thresholding
  • Unsupervised

ASJC Scopus subject areas

  • Information Systems
  • Information Systems and Management
  • Health Informatics
  • Artificial Intelligence
  • Computer Networks and Communications
  • Human-Computer Interaction

Fingerprint

Dive into the research topics of 'Unsupervised Classification of Cerebrospinal Fluid by Statistical Indicators'. Together they form a unique fingerprint.

Cite this