Abstract
Background. Transformation growth factor-β1 (TGF-β1) inhibits transepithelial sodium transport and suppresses the epithelial sodium channel (ENaC) in many different types of epithelial cells; however, the molecular mechanism of this effect in the kidney is still not clear. The aim of this study was to examine the regulation of transepithelial sodium transport by TGF-β1 in renal cells. Methods. We derived stable mouse cortical collecting duct cell lines that overexpressed Smad4 or N-termianl truncated Smad4, and studied the effects of TGF-β1 on them. The equivalent electrical current (Ieq) was taken as representing transepithelial current and the amiloride sensitive short circuit current (AmsIsc) as representing the ENaC activity. We used real-time PCR to quantify the expression of ENaC and measurement of the luciferase activity of cells transiently transfected with a mouse α-ENaC promoter to assess the α-ENaC promoter activity.Result. The administration of TGF-β1 decreased Ieq, mainly as a result of the decrease of AmsIsc, and it correlated with inhibition of the α-ENaC mRNA expression. The overexpression of Smad4 led to a decrease in AmsIsc, α-ENaC mRNA and α-ENaC promoter activity, but the overexpression of the N-terminal truncated Smad4 did not induce these changes. The TGF-β1-induced reduction of AmsIsc was alleviated in the N-terminal truncated Smad4-overexpressed cells. Conclusion. It appears that the N-terminus region of Smad4 is indispensable in Smad4-mediated inhibition of the transepithelial sodium transport. TGF-β1 may decrease the ENaC functionality via a Smad4-dependent pathway.
Original language | English |
---|---|
Pages (from-to) | 1126-1134 |
Number of pages | 9 |
Journal | Nephrology Dialysis Transplantation |
Volume | 23 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2008 |
Externally published | Yes |
Keywords
- Cortical collecting duct
- Epithelial sodium channel
- Short circuit current
- Smad signalling pathway
- TGF-β1
ASJC Scopus subject areas
- Nephrology
- Transplantation