Abstract
The timely and precise prediction of cardiovascular disease (CVD) risk is essential for effective prevention and intervention. This study proposes a novel framework that integrates the two-phase Taguchi method (TPTM), the hyperparameter artificial neural network (HANN), and a genetic algorithm (GA) called TPTM-HANN-GA. This framework efficiently optimizes hyperparameters for an artificial neural network (ANN) model during the training stage, significantly enhancing prediction accuracy for cardiovascular disease (CVD) risk. The proposed TPTM-HANN-GA framework requires far fewer experiments than a traditional grid search, making it highly suitable for application in resource-constrained, low-power computers, and edge artificial intelligence (edge AI) devices. Furthermore, the proposed TPTM-HANN-GA framework successfully identified the optimal configurations for the ANN model’s hyperparameters, resulting in a hidden layer of 4 nodes, a tanh activation function, an SGD optimizer, a learning rate of 0.23425849, a momentum rate of 0.75462782, and seven hidden nodes. This optimized ANN model achieves 74.25% accuracy in predicting the risk of cardiovascular disease, which exceeds the existing state-of-the-art GA-ANN and TSTO-ANN models. The proposed TPTM-HANN-GA framework enables personalized CVD prediction to be efficiently conducted on low-power computers and edge-AI devices, achieving the goal of point-of-care testing (POCT) and empowering individuals to manage their heart health effectively.
Original language | English |
---|---|
Article number | 1303 |
Number of pages | 22 |
Journal | Mathematics |
Volume | 12 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- cardiovascular disease
- two-phase Taguchi method
- artificial neural network
- genetic algorithm
- edge-AI
- point-of-care testing