TY - JOUR
T1 - Three-dimensional printed porous titanium screw with bioactive surface modification for bone–tendon healing
T2 - A rabbit animal model
AU - Huang, Yu Min
AU - Huang, Chih Chieh
AU - Tsai, Pei I.
AU - Yang, Kuo Yi
AU - Huang, Shin I.
AU - Shen, Hsin Hsin
AU - Lai, Hong Jen
AU - Huang, Shu Wei
AU - Chen, San Yuan
AU - Lin, Feng Huei
AU - Chen, Chih Yu
N1 - Funding Information:
Funding: This research was funded by Industrial Technology Research Institute: J356EX3200.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/5/21
Y1 - 2020/5/21
N2 - The interference screw fixation method is used to secure a graft in the tibial tunnel during anterior cruciate ligament reconstruction surgery. However, several complications have been reported, such as biodegradable screw breakage, inflammatory or foreign body reaction, tunnel enlargement, and delayed graft healing. Using additive manufacturing (AM) technology, we developed a titanium alloy (Ti6Al4V) interference screw with chemically calcium phosphate surface modification technology to improve bone integration in the tibial tunnel. After chemical and heat treatment, the titanium screw formed a dense apatite layer on the metal surface in simulated body fluid. Twenty-seven New Zealand white rabbits were randomly divided into control and additive manufactured (AMD) screw groups. The long digital extensor tendon was detached and translated into a tibial plateau tunnel (diameter: 2.0 mm) and transfixed with an interference screw while the paw was in dorsiflexion. Biomechanical analyses, histological analyses, and an imaging study were performed at 1, 3, and 6 months. The biomechanical test showed that the ultimate pull-out load failure was significantly higher in the AMD screw group in all tested periods. Micro-computed tomography analyses revealed early woven bone formation in the AMD screw group at 1 and 3 months. In conclusion, AMD screws with bioactive surface modification improved bone ingrowth and enhanced biomechanical performance in a rabbit model.
AB - The interference screw fixation method is used to secure a graft in the tibial tunnel during anterior cruciate ligament reconstruction surgery. However, several complications have been reported, such as biodegradable screw breakage, inflammatory or foreign body reaction, tunnel enlargement, and delayed graft healing. Using additive manufacturing (AM) technology, we developed a titanium alloy (Ti6Al4V) interference screw with chemically calcium phosphate surface modification technology to improve bone integration in the tibial tunnel. After chemical and heat treatment, the titanium screw formed a dense apatite layer on the metal surface in simulated body fluid. Twenty-seven New Zealand white rabbits were randomly divided into control and additive manufactured (AMD) screw groups. The long digital extensor tendon was detached and translated into a tibial plateau tunnel (diameter: 2.0 mm) and transfixed with an interference screw while the paw was in dorsiflexion. Biomechanical analyses, histological analyses, and an imaging study were performed at 1, 3, and 6 months. The biomechanical test showed that the ultimate pull-out load failure was significantly higher in the AMD screw group in all tested periods. Micro-computed tomography analyses revealed early woven bone formation in the AMD screw group at 1 and 3 months. In conclusion, AMD screws with bioactive surface modification improved bone ingrowth and enhanced biomechanical performance in a rabbit model.
KW - Additive manufacturing
KW - Bioactive ceramic coating
KW - Interference screw
KW - Titanium-alloy implant
UR - http://www.scopus.com/inward/record.url?scp=85085372010&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085372010&partnerID=8YFLogxK
U2 - 10.3390/ijms21103628
DO - 10.3390/ijms21103628
M3 - Article
C2 - 32455543
AN - SCOPUS:85085372010
SN - 1661-6596
VL - 21
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 10
M1 - 3628
ER -