TY - JOUR
T1 - Three-Dimensional conductive nanocomposites based on multiwalled carbon nanotube networks and PEDOT
T2 - PSS as a flexible transparent electrode for optoelectronics
AU - Cho, Er Chieh
AU - Li, Chiu Ping
AU - Huang, Jui Hsiung
AU - Lee, Kuen Chan
AU - Huang, Jen Hsien
PY - 2015/6/3
Y1 - 2015/6/3
N2 - We have synthesized conductive nanocomposites composed of multiwalled carbon nanotubes (MWCNTs) and Au nanoparticles (NPs). The Au NPs with an average size of approximately 4.3 nm are uniformly anchored on the MWCNT. After being exposed to microwave (MW) plasma irradiation, the anchored Au NPs melt and fuse, leading to larger aggregates (34 nm) that can connect the MWCNT forming a three-dimensional conducting network. The formation of a continuous MWCNT network can produce more a conductive pathway, leading to lower sheet resistance. When the Au-MWCNT is dispersed in the highly conductive polymer, poly(ethylene dioxythiophene):polystyrenesulfonate (PEDOT:PSS), we can obtain solution-processable composite formulations for the preparation of a flexible transparent electrode. The resulting Au-MWCNT/PEDOT:PSS hybrid films possess a sheet resistance of 51 ω/sq with a transmittance of 86.2% at 550 nm. We also fabricate flexible organic solar cells and electrochromic devices to demonstrate the potential use of the as-prepared composite electrodes. Compared with the indium tin oxide-based devices, both the solar cells and electrochromic devices with the composites incorporated as a transparent electrode deliver comparable performance.
AB - We have synthesized conductive nanocomposites composed of multiwalled carbon nanotubes (MWCNTs) and Au nanoparticles (NPs). The Au NPs with an average size of approximately 4.3 nm are uniformly anchored on the MWCNT. After being exposed to microwave (MW) plasma irradiation, the anchored Au NPs melt and fuse, leading to larger aggregates (34 nm) that can connect the MWCNT forming a three-dimensional conducting network. The formation of a continuous MWCNT network can produce more a conductive pathway, leading to lower sheet resistance. When the Au-MWCNT is dispersed in the highly conductive polymer, poly(ethylene dioxythiophene):polystyrenesulfonate (PEDOT:PSS), we can obtain solution-processable composite formulations for the preparation of a flexible transparent electrode. The resulting Au-MWCNT/PEDOT:PSS hybrid films possess a sheet resistance of 51 ω/sq with a transmittance of 86.2% at 550 nm. We also fabricate flexible organic solar cells and electrochromic devices to demonstrate the potential use of the as-prepared composite electrodes. Compared with the indium tin oxide-based devices, both the solar cells and electrochromic devices with the composites incorporated as a transparent electrode deliver comparable performance.
KW - Au nanoparticles
KW - electrochromic devices
KW - microwave plasma irradiation
KW - multiwalled carbon nanotube
KW - solar cells
UR - http://www.scopus.com/inward/record.url?scp=84930673099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930673099&partnerID=8YFLogxK
U2 - 10.1021/acsami.5b03159
DO - 10.1021/acsami.5b03159
M3 - Article
AN - SCOPUS:84930673099
SN - 1944-8244
VL - 7
SP - 11668
EP - 11676
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 21
ER -