Therapeutics for inflammatory-related diseases based on plasmon-activated water: A review

Chih Ping Yang, Yu Chuan Liu

Research output: Contribution to journalReview articlepeer-review

4 Citations (Scopus)


It is recognized that the properties of liquid water can be markedly different from those of bulk one when it is in contact with hydrophobic surfaces or is confined in nano-environments. Because our knowledge regarding water structure on the molecular level of dynamic equilibrium within a picosecond time scale is far from completeness all of water’s conventionally known properties are based on inert “bulk liquid water” with a tetrahedral hydrogen-bonded structure. Actually, the strength of water’s hydrogen bonds (HBs) decides its properties and activities. In this review, an innovative idea on preparation of metastable plasmon-activated water (PAW) with intrinsically reduced HBs, by letting deionized (DI) water flow through gold-supported nanoparticles (AuNPs) under resonant illumination at room temperature, is reported. Compared to DI water, the created stable PAW can scavenge free hydroxyl and 2,2-diphenyl-1-picrylhydrazyl radicals and effectively reduce NO release from lipopolysaccharide-induced inflammatory cells. Moreover, PAW can dramatically induce a major antioxidative Nrf2 gene in human gingival fibroblasts. This further confirms its cellular antioxidative and anti-inflammatory properties. In addition, innovatively therapeutic strategy of daily drinking PAW on inflammatory-related diseases based on animal disease models is demonstrated, examples being chronic kidney disease (CKD), chronic sleep deprivation (CSD), and lung cancer.

Original languageEnglish
Article number1589
JournalInternational Journal of Molecular Sciences
Issue number6
Publication statusPublished - Jun 1 2018


  • Animal disease model
  • Anti-inflammatory
  • Gold nanoparticles
  • Medicine
  • Plasmon-activated water

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Therapeutics for inflammatory-related diseases based on plasmon-activated water: A review'. Together they form a unique fingerprint.

Cite this