Abstract
Hollow, poly(L-lactic acid) microtube array membranes (MTAM) were used in preparing membranes that contained immobilized yeast cells. To evaluate the performance of the developed system for continuous and fed-batch fermentation, a gas chromatography/milli-whistle device was used to on-line monitor the production of ethanol. The milli-whistle was connected to the outlet of a GC capillary, and when the fermentation gases and the GC carrier gas passed through it, a sound with a fundamental frequency was produced. The online data obtained for frequency-change vs. retention time can be recorded after a fast Fourier transform. In typical bioethanol fermentation, the yeast cells cannot be recycled, whereas the artificial yeast-MTAMs can be. The hollow-MTAM containing immobilized yeast cells significantly enhanced to bioethanol productivity, and represent a novel, promising technology for bioethanol fermentation. Our data indicate that the gas chromatography/milli-whistle device, which is economical and stable, is a very useful detector for long-term monitoring.
Original language | English |
---|---|
Pages (from-to) | 625-630 |
Number of pages | 6 |
Journal | Analytical Sciences |
Volume | 33 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- Ethanol
- Gas chromatography
- Whistle
- Yeast immobilization
- Yeast-MTAM
ASJC Scopus subject areas
- Analytical Chemistry