TY - JOUR
T1 - The power of heteronemin in cancers
AU - Wang, Kuan
AU - Chen, Yi Fong
AU - Yang, Yu-Chen
AU - Huang, Haw-Ming
AU - Lee, Sheng Yang
AU - Shih, Ya Jung
AU - Li, Zi Lin
AU - Whang-Peng, Jacqueline
AU - Lin, Hung-Yun
AU - Davis, Paul J.
N1 - Funding Information:
This investigation was supported by research grants from the Ministry of Science and Technology, Taiwan (MOST110-2314-B-038-119 awarded to Dr. K. Wang; MOST 109-2314-B-038-038 awarded to Dr. Y-C.S.H. Yang; MOST109-2124-M-038-001, MOST110-2124-M-038-001 and MOST110-2314-B-038-114 awarded to Dr. J. Whang-Peng; MOST109-2314-B-038-125, MOST110-2314-B-038-147 and MOST110-2314-B-038-115 awarded to Dr. H-Y. Lin).
Funding Information:
Research conducted from our group was supported in part by the Chair Professor Research Fund to Dr. K. Wang and Dr. J. Whang-Peng, by TMU Research Center of Cancer Translational Medicine from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/6/15
Y1 - 2022/6/15
N2 - Heteronemin (Haimian jing) is a sesterterpenoid-type natural marine product that is isolated from sponges and has anticancer properties. It inhibits cancer cell proliferation via different mechanisms, such as reactive oxygen species (ROS) production, cell cycle arrest, apoptosis as well as proliferative gene changes in various types of cancers. Recently, the novel structure and bioactivity evaluation of heteronemin has received extensive attention. Hormones control physiological activities regularly, however, they may also affect several abnormalities such as cancer. L-Thyroxine (T4), steroid hormones, and epidermal growth factor (EGF) up-regulate the accumulation of checkpoint programmed death-ligand 1 (PD-L1) and promote inflammation in cancer cells. Heteronemin suppresses PD-L1 expression and reduces the PD-L1-induced proliferative effect. In the current review, we evaluated research and evidence regarding the antitumor effects of heteronemin and the antagonizing effects of non-peptide hormones and growth factors on heteronemin-induced anti-cancer properties and utilized computational molecular modeling to explain how these ligands interacted with the integrin αvβ3 receptors. On the other hand, thyroid hormone deaminated analogue, tetraiodothyroacetic acid (tetrac), modulates signal pathways and inhibits cancer growth and metastasis. The combination of heteronemin and tetrac derivatives has been demonstrated to compensate for anti-proliferation in cancer cells under different circumstances. Overall, this review outlines the potential of heteronemin in managing different types of cancers that may lead to its clinical development as an anticancer agent.
AB - Heteronemin (Haimian jing) is a sesterterpenoid-type natural marine product that is isolated from sponges and has anticancer properties. It inhibits cancer cell proliferation via different mechanisms, such as reactive oxygen species (ROS) production, cell cycle arrest, apoptosis as well as proliferative gene changes in various types of cancers. Recently, the novel structure and bioactivity evaluation of heteronemin has received extensive attention. Hormones control physiological activities regularly, however, they may also affect several abnormalities such as cancer. L-Thyroxine (T4), steroid hormones, and epidermal growth factor (EGF) up-regulate the accumulation of checkpoint programmed death-ligand 1 (PD-L1) and promote inflammation in cancer cells. Heteronemin suppresses PD-L1 expression and reduces the PD-L1-induced proliferative effect. In the current review, we evaluated research and evidence regarding the antitumor effects of heteronemin and the antagonizing effects of non-peptide hormones and growth factors on heteronemin-induced anti-cancer properties and utilized computational molecular modeling to explain how these ligands interacted with the integrin αvβ3 receptors. On the other hand, thyroid hormone deaminated analogue, tetraiodothyroacetic acid (tetrac), modulates signal pathways and inhibits cancer growth and metastasis. The combination of heteronemin and tetrac derivatives has been demonstrated to compensate for anti-proliferation in cancer cells under different circumstances. Overall, this review outlines the potential of heteronemin in managing different types of cancers that may lead to its clinical development as an anticancer agent.
KW - Anticancer
KW - Heteronemin
KW - Integrin αvβ3
KW - Marine sesterterpenoids
KW - Sponge
UR - http://www.scopus.com/inward/record.url?scp=85132072882&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85132072882&partnerID=8YFLogxK
U2 - 10.1186/s12929-022-00816-z
DO - 10.1186/s12929-022-00816-z
M3 - Review article
C2 - 35705962
AN - SCOPUS:85132072882
SN - 1021-7770
VL - 29
JO - Journal of Biomedical Science
JF - Journal of Biomedical Science
IS - 1
ER -