The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression

Shih Hwa Chiou, Yi Ping Yang, Jung Chun Lin, Chih Hung Hsu, Hua Ci Jhang, Yu Ting Yang, Chen Hsen Lee, Larry L.T. Ho, Wen Ming Hsu, Hung Hai Ku, Shih Jen Chen, Steve S.L. Chen, Margaret D.T. Chang, Cheng Wen Wu, Li Jung Juan

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

Human CMV (HCMV) is a widespread human pathogen that causes blindness by inducing retinitis in AIDS patients. Previously, we showed that viral immediate early 2 (IE2) protein may allow HCMV to evade the immune control by killing the Fas receptor-positive T lymphocytes attracted to the infected retina with increased secretion of Fas ligand (FasL). In this study, we further demonstrate that the secreted FasL also kills uninfected Fas-rich bystander retinal cells and that IE2 simultaneously protects the infected cells from undergoing apoptotic death, in part, by activating the expression of cellular FLIP (c-FLIP), an antiapoptotic molecule that blocks the direct downstream executer caspase 8 of the FasL/Fas pathway. c-FLIP induction requires the N-terminal 98 residues of IE2 and the c-FLIP promoter region spanning nucleotides -978 to -696. In vivo association of IE2 to this region, IE2-specific c-FLIP activation, and decrease of FasL-up-regulated activities of caspases 8 and 3 were all demonstrated in HCMV-infected human retinal cells. Moreover, c-FLIP up-regulation by IE2 appeared to involve PI3K and might also render cells resistant to TRAIL-mediated death. Finally, enhanced c-FLIP signals were immunohistochemicaly detected in IE-positive cells in the HCMV-infected lesions of the human retina. Taken together, these data demonstrate specific activation of c-FLIP by HCMV IE2 and indicate a novel role for c-FLIP in the pathogenesis of HCMV retinitis.

Original languageEnglish
Pages (from-to)6199-6206
Number of pages8
JournalJournal of Immunology
Volume177
Issue number9
DOIs
Publication statusPublished - Nov 1 2006
Externally publishedYes

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint

Dive into the research topics of 'The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression'. Together they form a unique fingerprint.

Cite this