Abstract
Porphyromonas gingivalis (P. gingivalis) is a bacterial species that causes periodontitis. GroEL from P. gingivalis may possess biological activity and may be involved in the destruction of periodontal tissues. However, it is unclear whether P. gingivalis GroEL enhances the appearance of atherogenic phenomena in endothelial cells and vessels. Here, we constructed recombinant GroEL from P. gingivalis to investigate its effects in human coronary artery endothelial cells (HCAECs) in vitro and on aortas of high-cholesterol (HC)-fed B57BL/6 and B57BL/6- Tlr4lps-del mice in vivo. The results showed that GroEL impaired tube-formation capacity under non-cytotoxic conditions in HCAECs. GroEL increased THP-1 cell/HCAEC adhesion by increasing the expression of intracellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 in endothelial cells. Additionally, GroEL increased DiI-oxidized low density lipoprotein (oxLDL) uptake, which may be mediated by elevated lectin-like oxLDL receptor (LOX)-1 but not scavenger receptor expressed by endothelial cells (SREC) and scavenger receptor class B1 (SR-B1) expression. Furthermore, GroEL interacts with toll-like receptor 4 (TLR4) and plays a causal role in atherogenesis in HCAECs. Human antigen R (HuR), an RNA-binding protein with a high affinity for the 3’ untranslated region (3’UTR) of TLR4 mRNA, contributes to the up-regulation of TLR4 induced by GroEL in HCAECs. In a GroEL animal administration study, GroEL elevated ICAM-1, VCAM-1, LOX-1 and TLR4 expression in the aortas of HC dietfed wild C57BL/6 but not C57BL/6-Tlr4lps-del mice. Taken together, our findings suggest that P. gingivalis GroEL may contribute to cardiovascular disorders by affecting TLR4 expression.
Original language | English |
---|---|
Pages (from-to) | 384-404 |
Number of pages | 21 |
Journal | American Journal of Translational Research |
Volume | 8 |
Issue number | 2 |
Publication status | Published - 2016 |
Keywords
- Atherosclerosis
- GroEL
- Porphyromonas gingivalis
ASJC Scopus subject areas
- Molecular Medicine
- Cancer Research
- Clinical Biochemistry