Abstract
High values of magnetic permeability and dielectric permittivity of polymer composite containing flake-shaped iron particles were prepared by the mechanical milling of two batches of iron powders [Fe(A) and Fe(B)] under controlled conditions. The frequency-dependent complex permittivity (ε′-jε″) and permeability (μ′-jμ″) of resin composites with 40 wt.% of flake-shaped iron particles are investigated in 2-18 GHz. The results show that all ε′, ε″, μ′, μ″ substantially increase due to the increase of milling time and the size of the flake-shaped particles. The enhancement of space-charge polarization increases the permittivity of the composite absorbers. The frequency dispersion of μ″ of flake-shaped Fe/epoxy composites show a higher resonance frequency (around 3 GHz) which exceeds the Snoek's limit in the gigahertz range due to their low eddy current loss coming from the particle shape effects. For 40 wt.% composite with 2 mm thickness, the predicted reflection loss reaches - 19.4 dB at 14.9 GHz for Fe(A)/2 hr, -28.0 dB at 8.96 GHz for Fe(A)/4 hr, -31.6 dB at 11.6 GHz and -42.9 dB for Fe(B)/2 hr at 7.84 GHz for Fe(B)/4 hr as magnetic fillers.
Original language | English |
---|---|
Article number | 6558948 |
Pages (from-to) | 4180-4183 |
Number of pages | 4 |
Journal | IEEE Transactions on Magnetics |
Volume | 49 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- Complex permeability
- complex permittivity
- flake-shaped iron powder
- reflection loss
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering