Abstract
Precedential evidence ascertaining the overexpression of LSD1 and HDACs in colorectal cancer spurred us to design a series of dual LSD1-HDAC inhibitors. Capitalizing on the modular nature of the three-component HDAC inhibitory model, tranylcypromine as a surface recognition motif was appended to zinc-binding motifs via diverse linkers. A compendium of hydroxamic acids was generated and evaluated for in vitro cytotoxicity against HCT-116 cells (human colorectal cancer cell lines). The most potent cell growth inhibitor 2 (GI50 = 0.495 μMm HCT-116 cells) shows promising anticancer effects by reducing colony formation and inducing cell cycle arrest in HCT-116 cells. It exhibits preferential inhibition of HDAC6, along with potent inhibition of LSD1 compared to standard inhibitors. Moreover, Compound 2 upregulates acetyl-tubulin, acetyl-histone H3, and H3K4me2, indicative of LSD1 and HDAC inhibition. In vivo, it demonstrates significant antitumor activity against colorectal cancer, better than irinotecan, and effectively inhibits growth in patient-derived CRC organoids.
Original language | English |
---|---|
Pages (from-to) | 17207-17225 |
Number of pages | 19 |
Journal | Journal of Medicinal Chemistry |
Volume | 67 |
Issue number | 19 |
DOIs | |
Publication status | Accepted/In press - 2024 |
ASJC Scopus subject areas
- Molecular Medicine
- Drug Discovery