TY - JOUR
T1 - Sustaining the Activation of EGFR Signal by Inflammatory Cytokine IL17A Prompts Cell Proliferation and EGFR-TKI Resistance in Lung Cancer
AU - Lee, Kai-Ling
AU - Lai, Tsung Ching
AU - Lee, Wei-Jiunn
AU - Chen, Yu-Chieh
AU - Ho, Kuo-Hao
AU - Hung, Wen-Yueh
AU - Yang, Yi-Chieh
AU - Chan, Ming-Hsien
AU - Hsieh, Feng-Koo
AU - Chung, Chi-Li
AU - Chang, Jer-Hwa
AU - Chien, Ming-Hsien
PY - 2023/6/22
Y1 - 2023/6/22
N2 - Non-small-cell lung cancer (NSCLC) is a typical inflammation-associated cancer, and lung adenocarcinoma (LUAD) is the most common pathological subtype. Epidermal growth factor (EGF) receptor (EGFR) mutations are the most common driver mutations of LUAD, and they have been identified as important therapeutic targets by EGFR-tyrosine kinase inhibitors (TKIs). The proinflammatory cytokine, interleukin (IL)-17A, and IL-17A-producing cells were reported to be elevated in the tumor microenvironment and peripheral blood of NSCLC patients and to be correlated with tumor progression and poor prognoses. However, the pathophysiological role of IL-17A in NSCLC remains unclear, although some studies suggested its involvement in cancer cell invasion and metastasis. Herein, we observed that expressions of IL-17A and its receptor, IL-17 receptor C (IL-17RC), were elevated in LUAD tissues and were correlated with poor survival in different lung cancer cohorts. In LUAD cells with mutant EGFR, the IL-17A/IL-17RC axis was shown to enhance phosphorylation of EGFR and Met, thereby promoting proliferation and resistance to EGFR-TKIs such as afatinib. In LUAD cells with wild-type (WT) EGFR, we found that the IL-17A/IL-17RC axis enhanced EGF-induced EGFR activation and cell proliferation through causing impairment of EGF-induced EGFR lysosomal degradation. Collectively, our results indicated diverse impacts of the IL-17A/IL-17RC axis on EGFR activation in LUAD cells with WT and mutant EGFR and suggested that developing therapeutic strategies against IL-17A/IL-17RC would be valuable for LUAD treatment.
AB - Non-small-cell lung cancer (NSCLC) is a typical inflammation-associated cancer, and lung adenocarcinoma (LUAD) is the most common pathological subtype. Epidermal growth factor (EGF) receptor (EGFR) mutations are the most common driver mutations of LUAD, and they have been identified as important therapeutic targets by EGFR-tyrosine kinase inhibitors (TKIs). The proinflammatory cytokine, interleukin (IL)-17A, and IL-17A-producing cells were reported to be elevated in the tumor microenvironment and peripheral blood of NSCLC patients and to be correlated with tumor progression and poor prognoses. However, the pathophysiological role of IL-17A in NSCLC remains unclear, although some studies suggested its involvement in cancer cell invasion and metastasis. Herein, we observed that expressions of IL-17A and its receptor, IL-17 receptor C (IL-17RC), were elevated in LUAD tissues and were correlated with poor survival in different lung cancer cohorts. In LUAD cells with mutant EGFR, the IL-17A/IL-17RC axis was shown to enhance phosphorylation of EGFR and Met, thereby promoting proliferation and resistance to EGFR-TKIs such as afatinib. In LUAD cells with wild-type (WT) EGFR, we found that the IL-17A/IL-17RC axis enhanced EGF-induced EGFR activation and cell proliferation through causing impairment of EGF-induced EGFR lysosomal degradation. Collectively, our results indicated diverse impacts of the IL-17A/IL-17RC axis on EGFR activation in LUAD cells with WT and mutant EGFR and suggested that developing therapeutic strategies against IL-17A/IL-17RC would be valuable for LUAD treatment.
U2 - 10.3390/cancers15133288
DO - 10.3390/cancers15133288
M3 - Article
C2 - 37444399
SN - 2072-6694
VL - 15
JO - Cancers
JF - Cancers
IS - 13
ER -