TY - JOUR
T1 - Sustained local delivery of high-concentration vancomycin from a hybrid biodegradable, antibiotic-eluting, nanofiber-loaded endovascular prosthesis for treatment of mycotic aortic aneurysms
AU - Liu, Kuo Sheng
AU - Lee, Cheng Hung
AU - Lee, Demei
AU - Liu, Michelle
AU - Tsai, Feng Chun
AU - Tseng, Yuan Yun
N1 - Funding Information:
Supported by the Ministry of Science and Technology, Taiwan (MOST 105-2314-B-182A-104).
PY - 2018/8
Y1 - 2018/8
N2 - Background: Endovascular repair for mycotic aortic aneurysm (MAA) is a less invasive alternative to open surgery, although the placement of a stent graft in an infected environment remains controversial. In this study, we developed hybrid biodegradable, vancomycin-eluting, nanofiber-loaded endovascular prostheses and evaluated antibiotic release from the endovascular prostheses both in vitro and in vivo. Methods: Poly(D,L)-lactide-co-glycolide and vancomycin were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. This solution was electrospun into nanofibrous tubes, which were mounted onto commercial vascular stents and endovascular aortic stent grafts. In vitro antibiotic release from the nanofibers was characterized using an elution method and high-performance liquid chromatography. Antibiotic release from the hybrid stent graft was analyzed in a three-dimensional-printed model of a circulating MAA. The in vivo drug release characteristics were examined by implanting the antibiotic-eluting stents in the abdominal aorta of New Zealand white rabbits (n = 15). Results: The in vitro study demonstrated that the biodegradable nanofibers and the nanofiber-loaded stent graft provided sustained release of high concentrations of vancomycin for up to 30 days. The in vivo study showed that the nanofiber-loaded stent exhibited excellent biocompatibility and released high concentrations of vancomycin into the local aortic wall for 8 weeks. Conclusions: The proposed biodegradable vancomycin-eluting nanofibers significantly contribute to the achievement of local and sustainable delivery of antibiotics to the aneurysm sac and the aortic wall, and these nanofibers may have therapeutic applications for MAAs.
AB - Background: Endovascular repair for mycotic aortic aneurysm (MAA) is a less invasive alternative to open surgery, although the placement of a stent graft in an infected environment remains controversial. In this study, we developed hybrid biodegradable, vancomycin-eluting, nanofiber-loaded endovascular prostheses and evaluated antibiotic release from the endovascular prostheses both in vitro and in vivo. Methods: Poly(D,L)-lactide-co-glycolide and vancomycin were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. This solution was electrospun into nanofibrous tubes, which were mounted onto commercial vascular stents and endovascular aortic stent grafts. In vitro antibiotic release from the nanofibers was characterized using an elution method and high-performance liquid chromatography. Antibiotic release from the hybrid stent graft was analyzed in a three-dimensional-printed model of a circulating MAA. The in vivo drug release characteristics were examined by implanting the antibiotic-eluting stents in the abdominal aorta of New Zealand white rabbits (n = 15). Results: The in vitro study demonstrated that the biodegradable nanofibers and the nanofiber-loaded stent graft provided sustained release of high concentrations of vancomycin for up to 30 days. The in vivo study showed that the nanofiber-loaded stent exhibited excellent biocompatibility and released high concentrations of vancomycin into the local aortic wall for 8 weeks. Conclusions: The proposed biodegradable vancomycin-eluting nanofibers significantly contribute to the achievement of local and sustainable delivery of antibiotics to the aneurysm sac and the aortic wall, and these nanofibers may have therapeutic applications for MAAs.
UR - http://www.scopus.com/inward/record.url?scp=85031770037&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85031770037&partnerID=8YFLogxK
U2 - 10.1016/j.jvs.2017.07.142
DO - 10.1016/j.jvs.2017.07.142
M3 - Article
AN - SCOPUS:85031770037
SN - 0741-5214
VL - 68
SP - 597
EP - 606
JO - Journal of Vascular Surgery
JF - Journal of Vascular Surgery
IS - 2
ER -