Surface-Enhanced Raman Scattering-Active Substrate Prepared with New Plasmon-Activated Water

Chih Ping Yang, Sheng Uei Fang, Kuang Hsuan Yang, Hsiao Chien Chen, Hui Yen Tsai, Fu Der Mai, Yu Chuan Liu

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Conventionally, reactions in aqueous solutions are prepared using deionized (DI) water, the properties of which are related to inert "bulk water" comprising a tetrahedral hydrogen-bonded network. In this work, we demonstrate the distinguished benefits of using in situ plasmon-activated water (PAW) with reduced hydrogen bonds instead of DI water in electrochemical reactions, which generally are governed by diffusion and kinetic controls. Compared with DI water-based systems, the diffusion coefficient and the electron-transfer rate constant of K3Fe(CN)6 in PAW in situ can be increased by ca. 35 and 15%, respectively. These advantages are responsible for the improved performance of surface-enhanced Raman scattering (SERS). On the basis of PAW in situ, the SERS enhancement of twofold higher intensity of rhodamine 6G and the corresponding low relative standard deviation of 5%, which is comparable to and even better than those based on complicated processes shown in the literature, are encouraging.

Original languageEnglish
Pages (from-to)4743-4751
Number of pages9
JournalACS Omega
Volume3
Issue number5
DOIs
Publication statusPublished - Jan 1 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Surface-Enhanced Raman Scattering-Active Substrate Prepared with New Plasmon-Activated Water'. Together they form a unique fingerprint.

Cite this