Abstract
As shown in the literature, electrochemical underpotential deposition (UPD) offers the ability to deposit up to a monolayer of one metal onto a more noble metal with a flat surface. In this work, we develop an electrochemical pathway to prepare more surface-enhanced Raman scattering (SERS)-active substrates with Ag UPD-modified Au nanoparticles (NPs) by using sonoelectrochemical deposition-dissolution cycles (SEDDCs). Encouragingly, the SERS of Rhodamine 6G (R6G) adsorbed on these Ag UPD-modified Au NPs exhibits a higher intensity by ca. 12-fold magnitude, as compared with that of R6G adsorbed on unmodified Au NPs. The prepared SERS-active substrate demonstrates a large Raman scattering enhancement for R6G with a detection limit of 2 × 10-14 M and an enhancement factor of 5.0 × 108. Also, the strategy proposed in this work to improve the SERS effects by using UPD Ag based on SEDDCs has an effect on the smaller probe molecules of 2,2′-bipyridine (BPy).
Original language | English |
---|---|
Pages (from-to) | 4943-4950 |
Number of pages | 8 |
Journal | Analyst |
Volume | 137 |
Issue number | 21 |
DOIs | |
Publication status | Published - Nov 7 2012 |
ASJC Scopus subject areas
- Analytical Chemistry
- Biochemistry
- Environmental Chemistry
- Spectroscopy
- Electrochemistry