Abstract
Background. Histone deacetylases and histone acetyl transferases covalently modify histone proteins, consequentially altering chromatin architecture and gene expression. Methods. The effects of suberoylanilide hydroxamic acid, a HDAC inhibitor, on 320 HSR colon cells were assessed in 320 HSR colon cancer cells. Results. Concentration and time-dependent inhibition of 320 HSR cell proliferation was observed. Treatment of 320 HSR cells with 5 M SAHA for 72 h significantly inhibited their growth by 50% as compared to that of the control. Fluorescence-activated cell sorting analysis demonstrated significant inhibition of cell cycle progression (sub-G1 arrest) and induction of apoptosis upon various SAHA concentrations after 48 h. In addition, the anti-apoptosis proteins, survivin and Bcl-xL, were significantly inhibited by SAHA after 72 h of treatment. Immunocytochemistry analysis revealed that SAHA-resistant cells were positive for cyclin A (85%), ki-67 (100%), p53 (100%), survivin (100%), and p21 (90%) expression. Furthermore, a significant increase cyclin A-, Ki-67-, p53-, survivin-, and p21-positive cells were noted in SAHA-resistant tumor cells. Conclusion. Our results demonstrated for the first time in 320 HSR colon adenocarcinoma cells that SAHA might be considered as an adjuvant therapy for colon adenocarcinoma.
Original language | English |
---|---|
Article number | 76 |
Journal | Journal of Biomedical Science |
Volume | 17 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry, medical
- Pharmacology (medical)
- Molecular Biology
- Clinical Biochemistry
- Endocrinology, Diabetes and Metabolism
- Cell Biology