Abstract
Phellinus linteus (PL), an edible and medicinal mushroom containing a diversity of styrylpyrone-type polyphenols, has been shown to have a broad spectrum of bioactivities. In this study, the submerged liquid culture in a 1600-L working volume of fermentor was used for the large-scale production of PL mycelia. Whether PL mycelia extract is effective against nonalcoholic fatty liver disease (NAFLD) is still unclear. In the high fat/high fructose diet (HFD)-induced NAFLD C57BL/6 mice study, the dietary supplementation of ethyl acetate fraction from PL mycelia (PL-EA) for four weeks significantly attenuated an increase in body weight, hepatic lipid accumulation and fasting glucose levels. Mechanistically, PL-EA markedly upregulated the pgc-1α, sirt1 genes and adiponectin, downregulated gck and srebp-1c; upregulated proteins PPARγ, pAMPK, and PGC-1α, and downregulated SREBP-1 and NF-κB in the liver of HFD-fed mice. Furthermore, the major purified compounds of hispidin and hypholomine B in PL-EA significantly reduced the level of oleic and palmitic acids (O/P)-induced lipid accumulation through the inhibition of up-regulated lipogenesis and the energy-metabolism related genes, ampk and pgc-1α, in the HepG2 cells. Consequently, these findings suggest that the application of PL-EA is deserving of further investigation for treating NAFLD.
Original language | English |
---|---|
Article number | 898 |
Journal | Antioxidants |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2022 |
Keywords
- centrifugal partition chromatography (CPC)
- dyslipidemia
- hepatoprotection
- hispidin
- hypholomine B
- mice
- NAFLD
- Phellinus linteus
- styrylpyrone polyphenolics
ASJC Scopus subject areas
- Biochemistry
- Physiology
- Molecular Biology
- Clinical Biochemistry
- Cell Biology