TY - JOUR
T1 - Structure-based strategies for synthesis, lead optimization and biological evaluation of N-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as potential multi-target anticancer agents
AU - Ali, Ahmed Atef Ahmed
AU - Lee, Yu Ru
AU - Wu, Alexander T.H.
AU - Yadav, Vijesh Kumar
AU - Yu, Dah Shyong
AU - Huang, Hsu Shan
N1 - Funding Information:
The authors thank the NCI Developmental Therapeutics Program (DTP) for the 60-cancer-cell-line screening of selected compounds described in this paper, funded by the National Cancer Institute, National Institutes of Health (NIH-NCI). The present study was supported by grants (MOST108-2113-M-038-006 and MOST109-2113-M-038-003) from the Ministry of Science and Technology, Taiwan.
Publisher Copyright:
© 2020 The Author(s)
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/2
Y1 - 2021/2
N2 - As part of our research on developing multi-target small molecule anticancer agents, we designed, synthesized, and biologically evaluated a series of novel diversified analogues based on our thiadiazole-fused anthraquinone lead compound NSC745885. We initially screened our compounds based on their cytotoxicities against two prostate cancer cell lines (PC-3 and DU-145). Cytotoxicities of the selected compounds (3, 5, 6, 10, 11, 14, 15, 17, 18) were then evaluated using the single-dose testing against a panel of 60 cancer cell lines. Compounds which exceeded the threshold inhibition criteria (3, 6, 10, 11, 14, 17) were further evaluated using the five-dose cytotoxicity experiments against the panel of 60 cancer cell lines. Our compounds exhibited potent antiproliferative effects against the tested cancer cell lines with 50% growth inhibition (GI50) values in the sub-micro molar range. Furthermore, 3 and 6 showed high selectivity towards the leukemia subpanel, whereas 6 showed high selectivity towards the prostate subpanel. Our potent compound 11 (RV59, NSC763967) showed broad-spectrum cytotoxicity against different types of cancer cells, while being less cytotoxic than doxorubicin towards different normal cells (SV-HUC-1, WMPY-1, and RWPE-1). COMPARE analysis of the cytotoxicity data indicated that 11 is similar to the apoptosis-based anticancer drugs. We confirmed the apoptotic effects of 11 by microscopy, Western blotting, and flow cytometry of treated cancer cells, and found that it caused cells to exhibit apoptotic morphology, inhibited cyclin D1 and COX-2 in a dose-dependent manner, and accumulated cells at the G0/G1 phase with reduction of cells in the S and G2/M phases of cell cycle. Moreover, we tested the inhibition capabilities of our compounds towards Topoisomerases (TOP) using computational modeling and found that they are specific inhibitors to TOP1. Our data presented here presents our compounds as potential multi-target anticancer drugs.
AB - As part of our research on developing multi-target small molecule anticancer agents, we designed, synthesized, and biologically evaluated a series of novel diversified analogues based on our thiadiazole-fused anthraquinone lead compound NSC745885. We initially screened our compounds based on their cytotoxicities against two prostate cancer cell lines (PC-3 and DU-145). Cytotoxicities of the selected compounds (3, 5, 6, 10, 11, 14, 15, 17, 18) were then evaluated using the single-dose testing against a panel of 60 cancer cell lines. Compounds which exceeded the threshold inhibition criteria (3, 6, 10, 11, 14, 17) were further evaluated using the five-dose cytotoxicity experiments against the panel of 60 cancer cell lines. Our compounds exhibited potent antiproliferative effects against the tested cancer cell lines with 50% growth inhibition (GI50) values in the sub-micro molar range. Furthermore, 3 and 6 showed high selectivity towards the leukemia subpanel, whereas 6 showed high selectivity towards the prostate subpanel. Our potent compound 11 (RV59, NSC763967) showed broad-spectrum cytotoxicity against different types of cancer cells, while being less cytotoxic than doxorubicin towards different normal cells (SV-HUC-1, WMPY-1, and RWPE-1). COMPARE analysis of the cytotoxicity data indicated that 11 is similar to the apoptosis-based anticancer drugs. We confirmed the apoptotic effects of 11 by microscopy, Western blotting, and flow cytometry of treated cancer cells, and found that it caused cells to exhibit apoptotic morphology, inhibited cyclin D1 and COX-2 in a dose-dependent manner, and accumulated cells at the G0/G1 phase with reduction of cells in the S and G2/M phases of cell cycle. Moreover, we tested the inhibition capabilities of our compounds towards Topoisomerases (TOP) using computational modeling and found that they are specific inhibitors to TOP1. Our data presented here presents our compounds as potential multi-target anticancer drugs.
KW - Apoptosis
KW - Cell cycle
KW - COX-2
KW - Cyclin D1
KW - Thiadiazole-fused anthraquinone derivative
KW - Topoisomerase
UR - http://www.scopus.com/inward/record.url?scp=85100136592&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100136592&partnerID=8YFLogxK
U2 - 10.1016/j.arabjc.2020.10.031
DO - 10.1016/j.arabjc.2020.10.031
M3 - Article
AN - SCOPUS:85100136592
SN - 1878-5352
VL - 14
JO - Arabian Journal of Chemistry
JF - Arabian Journal of Chemistry
IS - 2
M1 - 102884
ER -