TY - JOUR
T1 - Structural Influence of RNA Incorporation in DNA
T2 - Quantitative Nuclear Magnetic Resonance Refinement of d(CG)r(CG)d(CG) and d(CG)r(C)d(TAGCG)
AU - Jaishree, T. N.
AU - Wang, Andrew H.J.
AU - van der Marel, Gijs A.
AU - van Boom, Jacques H.
PY - 1993
Y1 - 1993
N2 - RNA and DNA adopt different types of conformations, i.e., A-type with C3′-endo sugar pucker for RNA and B-type with C2′-endo sugar pucker for DNA, respectively. The structural influence of the incorporation of RNA nucleotides into DNA is less understood. In this paper, we present the three-dimensional structures of two RNA-containing oligonucleotides, d(CG)r(CG)d(CG) and d(CG)r(C)d-(TAGGG), as determined by the NMR refinement procedure, and assess the possible structural perturbation of DNA induced by RNA. With a single RNA insertion into an octamer DNA, its overall conformation remains as the canonical B-DNA, except that the sugar pucker of the rC3 residue is C3′-endo (pseudorotation angle P = 3.6°). In contrast, the hybrid hexamer is neither the pure B-DNA nor the pure A-DNA conformation. Instead, we propose a model in which the DNA parts adopt B conformation, whereas the RNA part adopts A conformation, with the overall conformation closer to A-DNA. To ensure an exhaustive search of the conformational space, the model was subjected to 100-ps simulated annealing with slow cooling or 100-ps molecular dynamics with subsequent quenching. Models obtained at different time points of the trajectories were further subjected to the SPEDREF NOE refinement [Robinson & Wang (1992) Biochemistry 31, 3524] and they appeared to arrive at a convergent model (<0.5 Å RMSD for the central four base pairs). The consensus hexamer structure contains a significant discontinuity at the (rG4)p(dC5) step with a base pair tilt angle of 6.7° and roll angle of 11.5°. This discontinuity may be related to the structural “bend” that occurs at the junction of the RNA and DNA helices.
AB - RNA and DNA adopt different types of conformations, i.e., A-type with C3′-endo sugar pucker for RNA and B-type with C2′-endo sugar pucker for DNA, respectively. The structural influence of the incorporation of RNA nucleotides into DNA is less understood. In this paper, we present the three-dimensional structures of two RNA-containing oligonucleotides, d(CG)r(CG)d(CG) and d(CG)r(C)d-(TAGGG), as determined by the NMR refinement procedure, and assess the possible structural perturbation of DNA induced by RNA. With a single RNA insertion into an octamer DNA, its overall conformation remains as the canonical B-DNA, except that the sugar pucker of the rC3 residue is C3′-endo (pseudorotation angle P = 3.6°). In contrast, the hybrid hexamer is neither the pure B-DNA nor the pure A-DNA conformation. Instead, we propose a model in which the DNA parts adopt B conformation, whereas the RNA part adopts A conformation, with the overall conformation closer to A-DNA. To ensure an exhaustive search of the conformational space, the model was subjected to 100-ps simulated annealing with slow cooling or 100-ps molecular dynamics with subsequent quenching. Models obtained at different time points of the trajectories were further subjected to the SPEDREF NOE refinement [Robinson & Wang (1992) Biochemistry 31, 3524] and they appeared to arrive at a convergent model (<0.5 Å RMSD for the central four base pairs). The consensus hexamer structure contains a significant discontinuity at the (rG4)p(dC5) step with a base pair tilt angle of 6.7° and roll angle of 11.5°. This discontinuity may be related to the structural “bend” that occurs at the junction of the RNA and DNA helices.
UR - http://www.scopus.com/inward/record.url?scp=0027325180&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027325180&partnerID=8YFLogxK
U2 - 10.1021/bi00069a027
DO - 10.1021/bi00069a027
M3 - Article
C2 - 7683912
AN - SCOPUS:0027325180
SN - 0006-2960
VL - 32
SP - 4903
EP - 4911
JO - Biochemistry
JF - Biochemistry
IS - 18
ER -