Abstract
Sorafenib (Nexavar, BAY43-9006), a bi-arylurea, is a newly established anti-cancer drug and its functional attribute of cytotoxicity is based on the multi-kinase inhibitory action. here, we report yet another novel pathway in which sorafenib can induce apoptotic cell death preferentially and efficaciously on an experimentally proven drug- and radio-resistant human hep G2 cells via a mitochondria-dependent oxidative stress mechanism. a real-time confocal imaging assay revealed that sorafenib could rapidly provoke the production of ROS plethorically, mainly concentrating in the mitochondria, albeit substantial amounts of ROS could also be detected in cytosol and nucleus. The rapid production of ROS could simultaneously induce intracellular glutathione (iGSH) depletion. a nearly 90% of iGSH was found to be depleted in 1h period after the cells received the drug treatment. Besides mitochondria, iGSH depletion could also be detected in other cellular compartment including cytoplasm and nucleus. Interestingly, we also demonstrated that sorafenib could trigger mitochondrial Ca2+ overload. all these events compoundedly serve as the final arbitrator to initiate lethal apoptotic process through the release of cytochrome c and caspase 3/7 activation. Collectively, we provide first evidence here that sorafenib can provoke an alternative pathway for apoptosis induction of Hep G2 cells through a mitochondria-dependent oxidative stress mechanism which is independent of original kinase inhibitory attribute of the drug action. Most importantly, we also demonstrate that sorafenib can effectively eradicate a highly drug- and radio-resistant HCC cells. Thus, our data can provide the basis for a potential applicability of sorafenib in a combined treatment modality.
Original language | English |
---|---|
Pages (from-to) | 1904-1913 |
Number of pages | 10 |
Journal | Cancer Biology and Therapy |
Volume | 8 |
Issue number | 20 |
DOIs | |
Publication status | Published - Oct 15 2009 |
Keywords
- Anti-cancer drug
- Apoptosis
- Confocal
- Hepatocellular carcinoma cell
- Mitochondria
- Oxidative stress mechanism
- Sorafenib
ASJC Scopus subject areas
- Molecular Medicine
- Oncology
- Cancer Research
- Pharmacology