TY - JOUR
T1 - Silica Ouzo Effect
T2 - Amphiphilic Drugs Facilitate Nanoprecipitation of Polycondensed Mercaptosilanes
AU - Chiu, Shih Jiuan
AU - Lin, Chien Yu
AU - Chou, Hung Chang
AU - Hu, Teh Min
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2016/1/12
Y1 - 2016/1/12
N2 - Amphiphilic drugs are therapeutic agents whose molecular structures contain both hydrophobic and hydrophilic portions. Here we report a systematic study on how amphiphilic drugs can assist in silica nanoprecipitation. 3-Mercaptopropyltrimethoxysilane (MPTMS) was used as the sole silica material and 12 amphiphilic drugs spanning a wide spectrum of therapeutic categories were included. MPTMS polycondensation was conducted in a DMSO-based organic phase. After a sufficient time, particle formation was induced by injecting a small amount of the organic phase into a water solution containing various amphiphiles. The results show that all amphiphilic drugs studied exerted concentration-dependent facilitating effect on nanoparticle formation. Under certain preparation conditions, the particle solution showed physical stability over a long period and the formed particles could be as small as 100 nm. By systematically varying drug concentrations and injection volumes, the ability of each amphiphile to promote nanoprecipitation can be quantified and compared, based on two novel indices: the area under the critical volume-concentration curve (AUC) and the critical stabilization concentration (CSC). We demonstrate that both ability indices significantly correlated with the drug's log P and critical micelle concentrations (CMC). Furthermore, we have optimized the aging and particle purification condition and extensively characterized our system through comprehensive TEM and zeta-potential measurements, as well as determinations for drug entrapment and release. In conclusion, we have established a quantitative structure-activity relationship for amphiphilic small-molecular drugs in their ability to interact with poly(mercaptopropyl)silsesquioxane species and form nanoparticles via solvent shifting. We speculate that both hydrophobic and electrostatic interactions play important roles in the formation and stabilization of nanoparticles.
AB - Amphiphilic drugs are therapeutic agents whose molecular structures contain both hydrophobic and hydrophilic portions. Here we report a systematic study on how amphiphilic drugs can assist in silica nanoprecipitation. 3-Mercaptopropyltrimethoxysilane (MPTMS) was used as the sole silica material and 12 amphiphilic drugs spanning a wide spectrum of therapeutic categories were included. MPTMS polycondensation was conducted in a DMSO-based organic phase. After a sufficient time, particle formation was induced by injecting a small amount of the organic phase into a water solution containing various amphiphiles. The results show that all amphiphilic drugs studied exerted concentration-dependent facilitating effect on nanoparticle formation. Under certain preparation conditions, the particle solution showed physical stability over a long period and the formed particles could be as small as 100 nm. By systematically varying drug concentrations and injection volumes, the ability of each amphiphile to promote nanoprecipitation can be quantified and compared, based on two novel indices: the area under the critical volume-concentration curve (AUC) and the critical stabilization concentration (CSC). We demonstrate that both ability indices significantly correlated with the drug's log P and critical micelle concentrations (CMC). Furthermore, we have optimized the aging and particle purification condition and extensively characterized our system through comprehensive TEM and zeta-potential measurements, as well as determinations for drug entrapment and release. In conclusion, we have established a quantitative structure-activity relationship for amphiphilic small-molecular drugs in their ability to interact with poly(mercaptopropyl)silsesquioxane species and form nanoparticles via solvent shifting. We speculate that both hydrophobic and electrostatic interactions play important roles in the formation and stabilization of nanoparticles.
UR - http://www.scopus.com/inward/record.url?scp=84954214669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954214669&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.5b04048
DO - 10.1021/acs.langmuir.5b04048
M3 - Article
C2 - 26673354
AN - SCOPUS:84954214669
SN - 0743-7463
VL - 32
SP - 211
EP - 220
JO - Langmuir
JF - Langmuir
IS - 1
ER -