Abstract
Molecular physicobiochemical calculations indicated that the metallic ion binding to beta-amyloids (Aβ) may induce production of hydrogen peroxide, which triggers the Ca ion redistribution from the extracellular to the intracellular compartmentation, resulting in a transient membrane electropotential drop by at least 208.06 mV. Moreover, using the Mark and Houwink empirical equation, we predicted that the diffusible distances of all Aβ identities would be confined in a very tiny region within a radius less than 3.96 × 10-4 cm in brain at 192 h after produced. Because of the inherent tendency of aggregation behaved by the Aβs, the maximum diffusion coefficient and inherent viscosity were 8.24 × 10-15 cm2 s-1 and 72.15 cps for the 12 mers (40.8 kDa), the largest soluble form of ABs. Conclusively, we have quantitatively predicted that the shock membrane potential drop (Δφ > 208.06 mV) and limited diffusible distance (<3.96 × 10-4 cm) in the brain would contribute the major detrimental effects to the neurons in the Alzheimer's diseases.
Original language | English |
---|---|
Pages (from-to) | 339-345 |
Number of pages | 7 |
Journal | Colloids and Surfaces B: Biointerfaces |
Volume | 73 |
Issue number | 2 |
DOIs | |
Publication status | Published - Oct 15 2009 |
Keywords
- Diffusion
- Membrane Nernst potential
- Viscosity
- β-Amyloid
ASJC Scopus subject areas
- Biotechnology
- Surfaces and Interfaces
- Physical and Theoretical Chemistry
- Colloid and Surface Chemistry