Severe acute respiratory syndrome coronavirus (Sars-cov)-2 infection induces dysregulation of immunity: In silico gene expression analysis

Yen Hung Wu, I. Jeng Yeh, Nam Nhut Phan, Meng Chi Yen, Hsin Liang Liu, Chih Yang Wang, Hui Ping Hsu

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


Highly pathogenic coronaviruses (CoVs) induce acute respiratory distress syndrome, and the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused a pandemic since late 2019. The diversity of clinical manifestations after SARS-CoV-2 infection results in great challenges to diagnose CoV disease 2019 (COVID-19). There is a growing body of published research on this topic; however, effective medications are still undergoing a long process of being assessed. In the search for potential genetic targets for this infection, we applied a holistic bioinformatics approach to study alterations of gene signatures between SARS-CoV-2-infected cells and mock-infected controls. Two different kinds of lung epithelial cells, A549 with angiotensin-converting enzyme 2 (ACE2) overexpression and normal human bronchial epithelial (NHBE) cells, were infected with SARS-CoV-2. We performed bioinformatics analyses of RNA-sequencing in this study. Through a Venn diagram, Database for Annotation, Visualization and Integrated Discovery, Gene Ontology, Ingenuity Pathway Analysis, and Gene Set Enrichment Analysis, the pathways and networks were constructed from commonly upregulated genes in SARS-CoV-2-infected lung epithelial cells. Genes associated with immune-related pathways, responses of host cells after intracellular infection, steroid hormone biosynthesis, receptor signaling, and the complement system were enriched. Dysregulation of the immune system and malfunction of interferon contribute to a failure to kill SARS-CoV-2 and exacerbate respiratory distress in severely ill patients. Current findings from this study provide a comprehensive investigation of SARS-CoV-2 infection using high-throughput technology.

Original languageEnglish
Pages (from-to)1143-1152
Number of pages10
JournalInternational Journal of Medical Sciences
Issue number5
Publication statusPublished - 2021


  • Coronavirus
  • COVID-19
  • Immune system
  • Interferon
  • SARS-CoV-2

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Severe acute respiratory syndrome coronavirus (Sars-cov)-2 infection induces dysregulation of immunity: In silico gene expression analysis'. Together they form a unique fingerprint.

Cite this