TY - JOUR
T1 - Selective activation of specific PKC isoforms dictating the fate of CD14+ monocytes towards differentiation or apoptosis
AU - Lin, Yuan Feng
AU - Leu, Sy Jye
AU - Huang, Huei Mei
AU - Tsai, Yu Hui
PY - 2011/1
Y1 - 2011/1
N2 - In this study, phorbol-12-myristate-13-acetate (PMA) at low concentrations (+ monocytes into monocyte-derived macrophages (MDMs) while PMA at high concentrations (>100-nM; H-PMA) causes the apoptosis of these cells. The pre-treatment with Go6976 (a PKC-α/β1 selective inhibitor), not anilinemonoindolylmaleimide [a PKC-β inhibitor (PKC-β inh.)], significantly (P-+ monocytes. On the other hand, either of the above two PKC inhibitors is capable of suppressing the H-PMA-induced apoptosis of CD14+ monocytes. However, only the inclusion of PKC-β inh., not Go6976, prevents the cells from serum deprivation-induced cell apoptosis. Although the membrane translocation of conventional PKC-α, β1, and β2 isoforms was observed in the H-PMA-treated CD14+ monocytes, only PKC-β2 exhibits a mitochondrial translocation activity among those PKCs responsive to H-PMA treatment. Moreover, the activation of DEVD-dependent caspases (DEVDase) was also detected in the H-PMA-treated CD14+ monocytes, indicating the involvement of a caspase-dependent signaling pathway in the H-PMA-induced cell apoptosis of CD14+ monocytes. Together with our previous findings that the selective activation of PKC-α or PKC-β1 induces the differentiation of CD14+ monocytes into MDMs or dendritic cells (MoDCs), respectively, the results in this study further demonstrate that PKC-β2 activation is responsible for relaying the apoptotic signal to intrinsic mitochondria-dependent caspase signaling cascades in the CD14+ monocytes. It is likely that the selective activation of specific PKC isoforms provides a new strategy to manipulate the differential cell fate commitment of multipotent CD14+ monocytes towards apoptosis or differentiation into MDMs, MoDCs, and other cell types.
AB - In this study, phorbol-12-myristate-13-acetate (PMA) at low concentrations (+ monocytes into monocyte-derived macrophages (MDMs) while PMA at high concentrations (>100-nM; H-PMA) causes the apoptosis of these cells. The pre-treatment with Go6976 (a PKC-α/β1 selective inhibitor), not anilinemonoindolylmaleimide [a PKC-β inhibitor (PKC-β inh.)], significantly (P-+ monocytes. On the other hand, either of the above two PKC inhibitors is capable of suppressing the H-PMA-induced apoptosis of CD14+ monocytes. However, only the inclusion of PKC-β inh., not Go6976, prevents the cells from serum deprivation-induced cell apoptosis. Although the membrane translocation of conventional PKC-α, β1, and β2 isoforms was observed in the H-PMA-treated CD14+ monocytes, only PKC-β2 exhibits a mitochondrial translocation activity among those PKCs responsive to H-PMA treatment. Moreover, the activation of DEVD-dependent caspases (DEVDase) was also detected in the H-PMA-treated CD14+ monocytes, indicating the involvement of a caspase-dependent signaling pathway in the H-PMA-induced cell apoptosis of CD14+ monocytes. Together with our previous findings that the selective activation of PKC-α or PKC-β1 induces the differentiation of CD14+ monocytes into MDMs or dendritic cells (MoDCs), respectively, the results in this study further demonstrate that PKC-β2 activation is responsible for relaying the apoptotic signal to intrinsic mitochondria-dependent caspase signaling cascades in the CD14+ monocytes. It is likely that the selective activation of specific PKC isoforms provides a new strategy to manipulate the differential cell fate commitment of multipotent CD14+ monocytes towards apoptosis or differentiation into MDMs, MoDCs, and other cell types.
UR - http://www.scopus.com/inward/record.url?scp=78049255849&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78049255849&partnerID=8YFLogxK
U2 - 10.1002/jcp.22312
DO - 10.1002/jcp.22312
M3 - Article
C2 - 20626007
AN - SCOPUS:78049255849
SN - 0021-9541
VL - 226
SP - 122
EP - 131
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 1
ER -