Abstract
Salvianolic acid B (Sal B), a bioactive compound from Salvia miltiorrhiza, widely used to treat cardiovascular diseases, and stromal cell-derived factor-1α (SDF-1α)/CXCR4 pathway has been correlated with balloon angioplasty-induced neointimal formation. The purposes of the present study were to investigate whether Sal B can inhibit SDF-1α/CXCR4-mediated effects on the cell proliferation and migration of vascular smooth muscle cells (VSMCs) and to examine its possible molecular mechanisms. Under 0.5% FBS medium, all of the cellular studies were investigated on VSMCs (A10 cells) stimulated with 10. ng/ml SDF-1α alone or co-treated with 0.075. mg/ml Sal B. Our results showed that SDF-1α markedly stimulated the cell growth and migration of A10 cells, whose effects can be significantly reversed by co-incubation of Sal B. Similarly, Sal B also obviously down-regulated the SDF-1α-stimulated up-regulation of CXCR4 (total and cell-surface levels), Raf-1, MEK, ERK1/2, phospho-ERK1/2, FAK and phospho-FAK as well as an increase of the promoter activity of NF-κB. Besides, Sal B also effectively attenuated balloon angioplasty-induced neointimal hyperplasia. In conclusion, suppressing the expression levels of CXCR4 receptor and downstream molecules of SDF-1α/CXCR4 axis could possibly explain one of the pharmacological mechanisms of Sal B on prevention of cell proliferation, migration and subsequently neointimal hyperplasia.
Original language | English |
---|---|
Pages (from-to) | 98-105 |
Number of pages | 8 |
Journal | Vascular Pharmacology |
Volume | 56 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - Jan 2012 |
Externally published | Yes |
Keywords
- Salvianolic acid B
- Stromal cell-derived factor-1α
- Vascular smooth muscle cells
ASJC Scopus subject areas
- Molecular Medicine
- Physiology
- Pharmacology