TY - JOUR
T1 - Sake protein supplementation affects exercise performance and biochemical profiles in power-exercise-trained mice
AU - Chen, Yi Ming
AU - Lin, Che Li
AU - Wei, Li
AU - Hsu, Yi Ju
AU - Chen, Kuan Neng
AU - Huang, Chi Chang
AU - Kao, Chin Hsung
PY - 2016/2/20
Y1 - 2016/2/20
N2 - Exercise and fitness training programs have attracted the public’s attention in recent years. Sports nutrition supplementation is an important issue in the global sports market. Purpose: In this study, we designed a power exercise training (PET) program with a mouse model based on a strength and conditional training protocol for humans. We tested the effect of supplementation with functional branched-chain amino acid (BCAA)-rich sake protein (SP) to determine whether the supplement had a synergistic effect during PET and enhanced athletic performance and resistance to fatigue. Methods: Male ICR mice were divided into three groups (n = 8 per group) for four-week treatment: sedentary controls with vehicle (SC), and PET and PET groups with SP supplementation (3.8 g/kg, PET + SP). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time as well as changes in body composition and anti-fatigue activity levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise. The biochemical parameters were measured at the end of the experiment. Results: four-week PET significantly increased grip strength and exhaustive swimming time and decreased epididymal fat pad (EFP) weight and area. Levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid (UA) were significantly increased. PET + SP supplementation significantly decreased serum lactate, ammonia and CK levels after the 15-min swimming exercise. The resting serum levels of AST, ALT, CREA and UA were all significantly decreased with PET + SP. Conclusion: The PET program could increase the exercise performance and modulate the body composition of mice. PET with SP conferred better anti-fatigue activity, improved biochemical profiles, and may be an effective ergogenic aid in strength training.
AB - Exercise and fitness training programs have attracted the public’s attention in recent years. Sports nutrition supplementation is an important issue in the global sports market. Purpose: In this study, we designed a power exercise training (PET) program with a mouse model based on a strength and conditional training protocol for humans. We tested the effect of supplementation with functional branched-chain amino acid (BCAA)-rich sake protein (SP) to determine whether the supplement had a synergistic effect during PET and enhanced athletic performance and resistance to fatigue. Methods: Male ICR mice were divided into three groups (n = 8 per group) for four-week treatment: sedentary controls with vehicle (SC), and PET and PET groups with SP supplementation (3.8 g/kg, PET + SP). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time as well as changes in body composition and anti-fatigue activity levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise. The biochemical parameters were measured at the end of the experiment. Results: four-week PET significantly increased grip strength and exhaustive swimming time and decreased epididymal fat pad (EFP) weight and area. Levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid (UA) were significantly increased. PET + SP supplementation significantly decreased serum lactate, ammonia and CK levels after the 15-min swimming exercise. The resting serum levels of AST, ALT, CREA and UA were all significantly decreased with PET + SP. Conclusion: The PET program could increase the exercise performance and modulate the body composition of mice. PET with SP conferred better anti-fatigue activity, improved biochemical profiles, and may be an effective ergogenic aid in strength training.
KW - Anti-fatigue
KW - Exercise performance
KW - Power exercise training
KW - Sake protein
KW - Strength and conditional training
UR - http://www.scopus.com/inward/record.url?scp=84958978966&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958978966&partnerID=8YFLogxK
U2 - 10.3390/nu8020106
DO - 10.3390/nu8020106
M3 - Article
C2 - 26907336
AN - SCOPUS:84958978966
SN - 2072-6643
VL - 8
JO - Nutrients
JF - Nutrients
IS - 2
M1 - 106
ER -