TY - JOUR
T1 - Risk assessment for people exposed to pm2.5 and constituents at different vertical heights in an urban area of taiwan
AU - Chen, Hsiu Ling
AU - Li, Chi Pei
AU - Tang, Chin Sheng
AU - Lung, Shih Chun Candice
AU - Chuang, Hsiao Chi
AU - Chou, Da Wei
AU - Chang, Li Te
N1 - Funding Information:
This study was funded in part by the Ministry of Science and Technology of Taiwan (MOST 107-2111-M-035-001).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/11
Y1 - 2020/11
N2 - Environmental epidemiological studies have consistently reported associations between ambient particulate matter (PM) concentrations and everyday mortality/morbidity. Many urban dwellers in Asia live in high-rise apartment buildings; thus, the pollutant concentrations of their immediate outdoor environments are affected by the vertical distribution of pollutants in the atmosphere. The vertical distributions of pollutants provide unique information about their sources and dynamic transport in urban areas, as well as their relationship to people’s exposure at ground level, while the vertical distributions of pollutants have rarely been considered in exposure assessment. In the current study, PM concentrations (with aerodynamic diameters less than 1.0 µm (PM1), 2.5 µm (PM2.5), and 10 µm (PM10)), nanoparticles, black carbon (BC), and particle-bound polycyclic aromatic hydrocarbons (p-PAHs) were measured at different residential heights—6 m, 16 m, and 27 m—at Feng Chia University near a popular night market in Western Taiwan. PM2.5 data were further adopted for health risk estimations. In winter, the magnitude of PM1, PM2.5, and PM10 concentrations were 16 m > 6 m > 27 m; nanoparticle concentrations were 6 m > 27 m > 16 m; and BC and p-PAHs concentrations were 27 m > 16 m > 6 m. In summer, PM1, PM2.5, and PM10 concentrations ranged from 6 m > 16 m > 27 m; nanoparticle concentrations were 6 m > 16 m; and BC and p-PAHs concentrations were from 27 m > 16 m. PM and constituents concentrations during winter were significantly higher in the nighttime than those in daytime, and levels of PM1, PM2.5, and PM10 increased rapidly on 6 m and 16 m heights (but did not increase at 27 m) after 5 pm, whereas these trends became less significant in summer. Health risk analysis for PM2.5 concentrations showed a decrease in lung cancer mortality rate and an extended lifespan for residents living at 27 m. Overall, the current study investigated the vertical profile of particulate matters and analyzed health impacts of PM2.5 at different residential heights in urban area of Taiwan. As the distributions of PM and the constituents varied at different residential heights, exposure and risk assessment of particle concentrations with multiple sizes and various components at broader vertical heights should be further investigated.
AB - Environmental epidemiological studies have consistently reported associations between ambient particulate matter (PM) concentrations and everyday mortality/morbidity. Many urban dwellers in Asia live in high-rise apartment buildings; thus, the pollutant concentrations of their immediate outdoor environments are affected by the vertical distribution of pollutants in the atmosphere. The vertical distributions of pollutants provide unique information about their sources and dynamic transport in urban areas, as well as their relationship to people’s exposure at ground level, while the vertical distributions of pollutants have rarely been considered in exposure assessment. In the current study, PM concentrations (with aerodynamic diameters less than 1.0 µm (PM1), 2.5 µm (PM2.5), and 10 µm (PM10)), nanoparticles, black carbon (BC), and particle-bound polycyclic aromatic hydrocarbons (p-PAHs) were measured at different residential heights—6 m, 16 m, and 27 m—at Feng Chia University near a popular night market in Western Taiwan. PM2.5 data were further adopted for health risk estimations. In winter, the magnitude of PM1, PM2.5, and PM10 concentrations were 16 m > 6 m > 27 m; nanoparticle concentrations were 6 m > 27 m > 16 m; and BC and p-PAHs concentrations were 27 m > 16 m > 6 m. In summer, PM1, PM2.5, and PM10 concentrations ranged from 6 m > 16 m > 27 m; nanoparticle concentrations were 6 m > 16 m; and BC and p-PAHs concentrations were from 27 m > 16 m. PM and constituents concentrations during winter were significantly higher in the nighttime than those in daytime, and levels of PM1, PM2.5, and PM10 increased rapidly on 6 m and 16 m heights (but did not increase at 27 m) after 5 pm, whereas these trends became less significant in summer. Health risk analysis for PM2.5 concentrations showed a decrease in lung cancer mortality rate and an extended lifespan for residents living at 27 m. Overall, the current study investigated the vertical profile of particulate matters and analyzed health impacts of PM2.5 at different residential heights in urban area of Taiwan. As the distributions of PM and the constituents varied at different residential heights, exposure and risk assessment of particle concentrations with multiple sizes and various components at broader vertical heights should be further investigated.
KW - Black carbon
KW - Fine particulate matter
KW - Nanoparticle
KW - Particle-bound polycyclic aromatic hydrocarbons
KW - Risk assessment
KW - Vertical height
UR - http://www.scopus.com/inward/record.url?scp=85095979084&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095979084&partnerID=8YFLogxK
U2 - 10.3390/atmos11111145
DO - 10.3390/atmos11111145
M3 - Article
AN - SCOPUS:85095979084
SN - 2073-4433
VL - 11
JO - ATMOSPHERE
JF - ATMOSPHERE
IS - 11
M1 - 1145
ER -