Abstract
Original language | English |
---|---|
Pages (from-to) | 3232-3246 |
Number of pages | 15 |
Journal | Molecular and Cellular Biology |
Volume | 25 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2005 |
Keywords
- cis acting element
- heterogeneous nuclear ribonucleoprotein
- heterogeneous nuclear ribonucleoprotein L
- heterogeneous nuclear ribonucleoprotein Q
- heterogeneous nuclear ribonucleoprotein R
- messenger RNA
- serotonin n acetyltransferase
- unclassified drug
- 3' untranslated region
- animal cell
- animal experiment
- animal tissue
- article
- circadian rhythm
- controlled study
- gene overexpression
- mathematical model
- nonhuman
- nucleotide sequence
- oscillation
- pineal body
- pinealocyte
- priority journal
- protein analysis
- rat
- RNA degradation
- RNA interference
- RNA stability
- species difference
- 3' Untranslated Regions
- Animals
- Arylalkylamine N-Acetyltransferase
- Base Sequence
- Circadian Rhythm
- Heterogeneous-Nuclear Ribonucleoproteins
- Molecular Sequence Data
- Pineal Gland
- Rats
- RNA Stability
- RNA, Messenger
- RNA, Small Interfering
- RNA-Binding Proteins
Fingerprint
Dive into the research topics of 'Rhythmic serotonin N-acetyltransferase mRNA degradation is essential for the maintenance of its circadian oscillation'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Molecular and Cellular Biology, Vol. 25, No. 8, 2005, p. 3232-3246.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Rhythmic serotonin N-acetyltransferase mRNA degradation is essential for the maintenance of its circadian oscillation
AU - Kim, T.-D.
AU - Kim, J.-S.
AU - Jong, H.K.
AU - Myung, J.
AU - Chae, H.-D.
AU - Woo, K.-C.
AU - Sung, K.J.
AU - Koh, D.-S.
AU - Kim, K.-T.
N1 - 引用次數:56 Export Date: 18 September 2018 CODEN: MCEBD 通訊地址: Kim, K.-T.; National Research Laboratory, Department of Life Science, Pohang Univ. of Sci. and Technology, San 31 Hyoja-Dong, Pohang, Kyung-Buk 790-784, South Korea; 電子郵件: [email protected] 分析序列編號: GENBANK: AF004108, AF092100, AKK59705, AY184814, NM_001533, NM_005817, NM_017008, NM_177509, U29663, U38306, U46502, U46661, XM_008139; 化學物質/CAS: 3' Untranslated Regions; Arylalkylamine N-Acetyltransferase, EC 2.3.1.87; Heterogeneous-Nuclear Ribonucleoproteins; RNA, Messenger; RNA, Small Interfering; RNA-Binding Proteins 參考文獻: Andreason, G.L., Evans, G.A., Introduction and expression of DNA molecules in eukaryotic cells by electroporation (1988) BioTechniques, 6, pp. 650-660; Baler, R., Covington, S., Klein, D.C., The rat arylalkylamine N-acetyltransferase gene promoter: cAMP activation via a cAMP-responsive element-CCAAT complex (1997) J. Biol. Chem., 272, pp. 6979-6985; Bernard, M., Iuvone, P.M., Cassone, V.M., Roseboom, P.H., Coon, S.L., Klein, D.C., Avian melatonin synthesis: Photic and circadian regulation of serotonin N-acetyltransferase mRNA in the chicken pineal gland and retina (1997) J. Neurochem., 68, pp. 213-224; Borjigin, J., Wang, M.M., Snyder, S.H., Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland (1995) Nature, 378, pp. 783-785; Chae, H.D., Park, T.J., Lee, Y.K., Lee, T.G., Kim, K.T., Rapid and simple measurement of serotonin N-acetyltransferase activity by liquid biphasic diffusion assay (1999) Neurochem. Int., 35, pp. 447-451; Coon, S.L., Roseboom, P.H., Baler, R., Weller, J.L., Namboodiri, M.A., Koonin, E.V., Klein, D.C., Pineal serotonin N-acetyltransferase: Expression cloning and molecular analysis (1995) Science, 270, pp. 1681-1683; Coon, S.L., Del Olmo, E., Young III, W.S., Klein, D.C., Melatonin synthesis enzymes in Macaca mulatta: Focus on arylalkylamine N-acetyltransferase (EC 2.3.1.87) (2002) J. Clin. Endocrinol. Metab., 87, pp. 4699-4706; Craft, C.M., Murage, J., Brown, B., Zhan-Poe, X., Bovine arylalkylamine N-acetyltransferase activity correlated with mRNA expression in pineal and retina (1999) Brain Res. Mol. Brain Res., 65, pp. 44-51; Dreyfuss, G., Kim, V.N., Kataoka, N., Messenger-RNA-binding proteins and the messages they carry (2002) Nat. Rev. Mol. Cell Biol., 3, pp. 195-205; Dunlap, J.C., Molecular bases for circadian clocks (1999) Cell, 96, pp. 271-290; Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., Tuschl, T., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells (2000) Nature, 411, pp. 494-498; Forger, D.B., Peskin, C.S., A detailed predictive model of the mammalian circadian clock (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 14806-14811; Foulkes, N.S., Borjigin, J., Snyder, S.H., Sassone-Corsi, P., Transcriptional control of circadian hormone synthesis via the CREM feedback loop (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 14140-14145; Foulkes, N.S., Borjigin, J., Snyder, S.H., Sassone-Corsi, P., Rhythmic transcription: The molecular basis of circadian melatonin synthesis (1997) Trends Neurosci., 20, pp. 487-492; Ganguly, S., Coon, S.L., Klein, D.C., Control of melatonin synthesis in the mammalian pineal gland: The critical role of serotonin acetylation (2002) Cell Tissue Res., 309, pp. 127-137; Gastel, J.A., Roseboom, P.H., Rinaldi, P.A., Weller, J.L., Klein, D.C., Melatonin production: Proteasomal proteolysis in serotonin N-acetyltransferase regulation (1998) Science, 279, pp. 1358-1360; Gauer, F., Poierl, V.J., Garidou, M.L., Simonneaux, V., Pevet, P., Molecular cloning of the arylalkylamine N-acetyltransferase and daily variations of its mRNA expression in the Syrian hamster pineal gland (1999) Brain Res. Mol. Brain Res., 71, pp. 87-95; Goldbeter, A., Computational approaches to cellular rhythms (2002) Nature, 420, pp. 238-245; Goodwin, B.C., Oscillatory behavior in enzymatic control processes (1965) Adv. Enzyme Regul., 3, pp. 425-438; Grosset, C., Chen, C.Y., Xu, N., Sonenberg, N., Jacquemin-Sablon, H., Shyu, A.B., A mechanism for translationally coupled mRNA turnover: Interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex (2000) Cell, 103, pp. 29-40; Hahm, B., Cho, O.H., Kim, J.E., Kim, Y.K., Kim, J.H., Oh, Y.L., Jang, S.K., Polypyrimidine tract-binding protein interacts with hnRNP L. (1998) FEBS Lett., 425, pp. 401-406; Hardin, P.E., Hall, J.C., Rosbash, M., Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels (1990) Nature, 343, pp. 536-540; Hassfeld, W., Chan, E.K., Mathison, D.A., Portman, D., Dreyfuss, G., Steiner, G., Tan, E.M., Molecular definition of heterogeneous nuclear ribonucleoprotein R (hnRNP R) using autoimmune antibody: Immunological relationship with hnRNP P (1998) Nucleic Acids Res., 26, pp. 439-445; Holcik, M., Korneluk, R.G., Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: Role of la autoantigen in XIAP translation (2000) Mol. Cell. Biol., 20, pp. 4648-4657; Kim, J.H., Hahm, B., Kim, Y.K., Choi, M., Jang, S.K., Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm (2000) J. Mol. Biol., 298, pp. 395-405; Kim, J.H., Paek, K.Y., Choi, K., Kim, T.-D., Hahm, B., Kim, K.-T., Jang, S.K., Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner (2003) Mol. Cell. Biol., 23, pp. 708-720; Kim, J.H., Paek, K.Y., Ha, S.H., Cho, S., Choi, K., Kim, C.S., Ryu, S.H., Jang, S.K., A cellular RNA-binding protein enhances internal ribosomal entry site-dependent translation through an interaction downstream of the hepatitis C virus polyprotein initiation codon (2004) Mol. Cell. Biol., 24, pp. 7878-7890; Klein, D.C., Weller, J.L., Indole metabolism in the pineal gland: A circadian rhythm in N-acetyltransferase (1970) Science, 169, pp. 1093-1095; Klein, D.C., Ganguly, S., Coon, S.L., Shi, Q., Gaildrat, P., Morin, F., Weller, J.L., Dyda, F., 14-3-3 Proteins in pineal photoneuroendocrine transduction: How many roles? (2003) J. Neuroendocrinol., 15, pp. 370-377; Lee, C., Etchegaray, J.P., Cagampang, F.R.A., London, A.S.I., Reppert, S.M., Posttranslational mechanisms regulate the mammalian circadian clock (2001) Cell, 107, pp. 855-867; Leloup, J.C., Goldbeter, A., Toward a detailed computational model for the mammalian circadian clock (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 7051-7056; Lowrey, P.L., Shimomura, K., Antoch, M.P., Yamazaki, S., Zemenides, P.D., Ralph, M.R., Menaker, M., Takahashi, J.S., Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau (2000) Science, 288, pp. 483-492; Mayr, B., Montminy, M., Transcriptional regulation by the phosphorylation-dependent factor CREB (2001) Nat. Rev. Mol. Cell Biol., 2, pp. 599-609; McAdams, H.H., Arkin, A., Simulation of prokaryotic genetic circuits (1998) Annu. Rev. Biophys. Biomol. Struct., 27, pp. 199-224; Mitchell, P., Tollervey, D., mRNA stability in eukaryotes (2000) Curr. Opin. Genet. Dev., 10, pp. 193-198; Mizutani, A., Fukuda, M., Ibata, K., Shiraishi, Y., Mikoshiba, K., SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms (2000) J. Biol. Chem., 275, pp. 9823-9831; Mourelatos, Z., Abel, L., Yong, J., Kataoka, N., Dreyfuss, G., SMN interacts with a novel family of hnRNP and spliceosomal proteins (2001) EMBO J., 20, pp. 5443-5452; Park, J.B., Kim, J.H., Kim, Y., Ha, S.H., Yoo, J.S., Du, G., Frohman, M.A., Ryu, S.H., Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by α-actinin in an ADP-ribosylation factor-reversible manner (2000) J. Biol. Chem., 275, pp. 21295-21301; Pfeffer, M., Maronde, E., Molina, C.A., Korf, H.W., Stehle, J.H., Inducible cyclic AMP early repressor protein in rat pinealocytes: A highly sensitive natural reporter for regulated gene transcription (1999) Mol. Pharmacol., 56, pp. 279-289; Reppert, S.M., Weaver, D.R., Molecular analysis of mammalian circadian rhythms (2001) Annu. Rev. Physiol., 63, pp. 647-676; Reppert, S.M., Weaver, D.R., Coordination of circadian timing in mammals (2002) Nature, 418, pp. 935-941; Roseboom, P.H., Coon, S.L., Baler, R., McCune, S.K., Weller, J.L., Klein, D.C., Melatonin synthesis: Analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland (1996) Endocrinology, 137, pp. 3033-3044; Roseboom, P.H., Namboodiri, M.A., Zimonjic, D.B., Popescu, N.C., Rodriguez, I.R., Gastel, J.A., Klein, D.C., Natural melatonin "knockdown" in C57BL/6J mice: Rare mechanism truncates serotonin N-acetyltransferase (1998) Brain Res. Mol. Brain Res., 63, pp. 189-197; Rossoll, W., Kroening, A.K., Ohndorf, U.M., Steegborn, C., Jablonka, S., Sendtner, M., Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: A role for Smn in RNA processing in motor axons? (2002) Hum. Mol. Genet., 11, pp. 93-105; Sathyanarayanan, S., Zheng, X., Xiao, R., Sehgal, A., Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A (2004) Cell, 116, pp. 603-615; Shearman, L.P., Sriram, S., Weaver, D.R., Maywood, E.S., Chaves, I., Zheng, B., Kume, K., Reppert, S.M., Interacting molecular loops in the mammalian circadian clock (2000) Science, 288, pp. 1013-1019; Shih, S.C., Claffey, K.P., Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. (1999) J. Biol. Chem., 274, pp. 1359-1365; Smolen, P., Baxter, D.A., Byrne, J.H., Mathematical modeling of gene networks (2000) Neuron, 26, pp. 567-580; So, W.V., Rosbash, M., Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling (1997) EMBO J., 16, pp. 7146-7155; Wilkinson, M.F., Shyu, A.B., Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm (2001) Bioessays, 23, pp. 775-787; Wilsbacher, L.D., Yamazaki, S., Herzog, E.D., Song, E.J., Radcliffe, L.A., Abe, M., Block, G., Takahashi, J.S., Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 489-494; Wilusz, C.J., Wormington, M., Peltz, S.W., The cap-to-tail guide to mRNA turnover (2001) Nat. Rev. Mol. Cell Biol., 2, pp. 237-246; Young, M.W., Kay, S.A., Time zones: A comparative genetics of circadian clocks (2001) Nat. Rev. Genet., 2, pp. 702-715
PY - 2005
Y1 - 2005
N2 - Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AANAT]) is the key enzyme in melatonin synthesis regulated by circadian rhythm. To date, our understanding of the oscillatory mechanism of melatonin has been limited to autoregulatory transcriptional and posttranslational regulations of AANAT mRNA. In this study, we identify three proteins from pineal glands that associate with cis-acting elements within species-specific AANAT 3′ untranslated regions to mediate mRNA degradation. These proteins include heterogeneous nuclear ribonucleoprotein R (hnRNP R), hnRNP Q, and hnRNP L. Their RNA-destabilizing function was determined by RNA interference and overexpression approaches. Expression patterns of these factors in pineal glands display robust circadian rhythm. The enhanced levels detected after midnight correlate with an abrupt decline in AANAT mRNA level. A mathematical model for the AANAT mRNA profile and its experimental evidence with rat pinealocytes indicates that rhythmic AANAT mRNA degradation mediated by hnRNP R, hnRNP Q, and hnRNP L is a key process in the regulation of its circadian oscillation. Copyright © 2005, American Society for Microbiology. All Rights Reserved.
AB - Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AANAT]) is the key enzyme in melatonin synthesis regulated by circadian rhythm. To date, our understanding of the oscillatory mechanism of melatonin has been limited to autoregulatory transcriptional and posttranslational regulations of AANAT mRNA. In this study, we identify three proteins from pineal glands that associate with cis-acting elements within species-specific AANAT 3′ untranslated regions to mediate mRNA degradation. These proteins include heterogeneous nuclear ribonucleoprotein R (hnRNP R), hnRNP Q, and hnRNP L. Their RNA-destabilizing function was determined by RNA interference and overexpression approaches. Expression patterns of these factors in pineal glands display robust circadian rhythm. The enhanced levels detected after midnight correlate with an abrupt decline in AANAT mRNA level. A mathematical model for the AANAT mRNA profile and its experimental evidence with rat pinealocytes indicates that rhythmic AANAT mRNA degradation mediated by hnRNP R, hnRNP Q, and hnRNP L is a key process in the regulation of its circadian oscillation. Copyright © 2005, American Society for Microbiology. All Rights Reserved.
KW - cis acting element
KW - heterogeneous nuclear ribonucleoprotein
KW - heterogeneous nuclear ribonucleoprotein L
KW - heterogeneous nuclear ribonucleoprotein Q
KW - heterogeneous nuclear ribonucleoprotein R
KW - messenger RNA
KW - serotonin n acetyltransferase
KW - unclassified drug
KW - 3' untranslated region
KW - animal cell
KW - animal experiment
KW - animal tissue
KW - article
KW - circadian rhythm
KW - controlled study
KW - gene overexpression
KW - mathematical model
KW - nonhuman
KW - nucleotide sequence
KW - oscillation
KW - pineal body
KW - pinealocyte
KW - priority journal
KW - protein analysis
KW - rat
KW - RNA degradation
KW - RNA interference
KW - RNA stability
KW - species difference
KW - 3' Untranslated Regions
KW - Animals
KW - Arylalkylamine N-Acetyltransferase
KW - Base Sequence
KW - Circadian Rhythm
KW - Heterogeneous-Nuclear Ribonucleoproteins
KW - Molecular Sequence Data
KW - Pineal Gland
KW - Rats
KW - RNA Stability
KW - RNA, Messenger
KW - RNA, Small Interfering
KW - RNA-Binding Proteins
U2 - 10.1128/MCB.25.8.3232-3246.2005
DO - 10.1128/MCB.25.8.3232-3246.2005
M3 - Article
SN - 0270-7306
VL - 25
SP - 3232
EP - 3246
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 8
ER -