Abstract
Original language | English |
---|---|
Pages (from-to) | 277-284 |
Number of pages | 8 |
Journal | Trends in Neurosciences |
Volume | 33 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2010 |
Externally published | Yes |
Keywords
- behavior
- brain function
- brain region
- decision making
- human
- mental performance
- neuromodulation
- nonhuman
- prediction
- priority journal
- rest
- review
- stimulus response
- working memory
- anatomy and histology
- animal
- brain
- brain mapping
- motor activity
- nerve cell network
- nerve tract
- physiology
- psychology
- Animals
- Brain
- Brain Mapping
- Humans
- Motor Activity
- Nerve Net
- Neural Pathways
- Rest
Fingerprint
Dive into the research topics of 'Rest-stimulus interaction in the brain: A review'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Trends in Neurosciences, Vol. 33, No. 6, 2010, p. 277-284.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Rest-stimulus interaction in the brain: A review
AU - Northoff, Georg
AU - Qin, Pengmin
AU - Nakao, Takashi
N1 - 被引用次數:89 Export Date: 31 March 2016 CODEN: TNSCD 通訊地址: Northoff, G.; 1Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; 電子郵件: [email protected] 參考文獻: Broyd, S.J., Default-mode brain dysfunction in mental disorders: a systematic review (2009) Neurosci. Biobehav. Rev., 33, pp. 279-296; Buckner, R.L., The brain's default network: anatomy, function, and relevance to disease (2008) Ann. N. Y. Acad. Sci., 1124, pp. 1-38; Morcom, A.M., Fletcher, P.C., Does the brain have a baseline? Why we should be resisting a rest (2007) Neuroimage, 37, pp. 1073-1082; Raichle, M.E., A default mode of brain function (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 676-682; Greicius, M.D., Menon, V., Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation (2004) J. Cogn. Neurosci., 16, pp. 1484-1492; Fox, M.D., The human brain is intrinsically organized into dynamic, anticorrelated functional networks (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 9673-9678; Fransson, P., Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis (2005) Hum. Brain Mapp., 26, pp. 15-29; Beckmann, C.F., Investigations into resting-state connectivity using independent component analysis (2005) Philos. Trans. R. Soc. Lond. B Biol. Sci., 360, pp. 1001-1013; Damoiseaux, J.S., Consistent resting-state networks across healthy subjects (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 13848-13853; Panksepp, J., (1998) Affective Neuroscience, , Oxford University Press; Rilling, J.K., Effect of menstrual cycle on resting brain metabolism in female rhesus monkeys (2008) Neuroreport, 19, pp. 537-541; Vincent, J.L., Intrinsic functional architecture in the anaesthetized monkey brain (2007) Nature, 447, pp. 83-86; Freeman, W.J., Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates (2003) Hum. Brain Mapp., 19, pp. 248-272; Shulman, R.G., Energetic basis of brain activity: implications for neuroimaging (2004) Trends Neurosci., 27, pp. 489-495; Shulman, R.G., A BOLD search for baseline (2007) Neuroimage, 36, pp. 277-281; Lorincz, M.L., ATP-dependent infra-slow (<0.1Hz) oscillations in thalamic networks (2009) PLoS One, 4, pp. e4447; Brown, T.M., Piggins, H.D., Electrophysiology of the suprachiasmatic circadian clock (2007) Prog. Neurobiol., 82, pp. 229-255; Peters, Y., Prefrontal cortical up states are synchronized with ventral tegmental area activity (2004) Synapse, 52, pp. 143-152; Arieli, A., Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses (1996) Science, 273, pp. 1868-1871; Buzsáki, G., Draguhn, A., Neuronal oscillations in cortical networks (2004) Science, 304, pp. 1926-1929; Edelman, G.M., Naturalizing consciousness: a theoretical framework (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 5520-5524; Fries, P., The gamma cycle (2007) Trends Neurosci., 30, pp. 309-316; Fries, P., Modulation of oscillatory neuronal synchronization by selective visual attention (2001) Science, 291, pp. 1560-1563; Koch, C., (2004), The quest for consciousness: A neurobiological approachLlinas, R.R., The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function (1988) Science, 242, pp. 1654-1664; Shulman, R.G., Baseline brain energy supports the state of consciousness (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 11096-11101; Boly, M., Baseline brain activity fluctuations predict somatosensory perception in humans (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 12187-12192; Maandag, N.J., Energetics of neuronal signaling and fMRI activity (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 20546-20551; Northoff, G., GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI (2007) Nat. Neurosci., 10, pp. 1515-1517; Llinas, R.R., Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 449-454; Barry, R.J., Event-related potentials in the auditory oddball as a function of EEG alpha phase at stimulus onset (2004) Clin. Neurophysiol., 115, pp. 2593-2601; Eijsden, P., Neurophysiology of functional imaging (2009) Neuroimage, 45, pp. 1047-1054; Buzsáki, G., Inhibition and brain work (2007) Neuron, 56, pp. 771-783; Jacob, T.C., GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition (2008) Nat. Rev. Neurosci., 9, pp. 331-343; Fox, M.D., Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses (2006) Nat. Neurosci., 9, pp. 23-25; Fox, M.D., Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior (2007) Neuron, 56, pp. 171-184; Muthukumaraswamy, S.D., Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 8356-8361; Haig, A.R., Gordon, E., Prestimulus EEG alpha phase synchronicity influences N100 amplitude and reaction time (1998) Psychophysiology, 35, pp. 591-595; Basar, E., Spontaneous EEG theta activity controls frontal visual evoked potential amplitudes (1998) Electroencephalogr. Clin. Neurophysiol., 108, pp. 101-109; Haig, A.R., Gordon, E., EEG alpha phase at stimulus onset significantly affects the amplitude of the P3 ERP component (1998) Int. J. Neurosci., 93, pp. 101-115; Jansen, B.H., Brandt, M.E., The effect of the phase of prestimulus alpha activity on the averaged visual evoked response (1991) Electroencephalogr. Clin. Neurophysiol., 80, pp. 241-250; Kruglikov, S.Y., Schiff, S.J., Interplay of electroencephalogram phase and auditory-evoked neural activity (2003) J. Neurosci., 23, pp. 10122-10127; Makeig, S., Dynamic brain sources of visual evoked responses (2002) Science, 295, pp. 690-694; Varela, F.J., Perceptual framing and cortical alpha rhythm (1981) Neuropsychologia, 19, pp. 675-686; Smallwood, J., Going AWOL in the brain: mind wandering reduces cortical analysis of external events (2008) J. Cogn. Neurosci., 20, pp. 458-469; Fiser, J., Small modulation of ongoing cortical dynamics by sensory input during natural vision (2004) Nature, 431, pp. 573-578; Kenet, T., Spontaneously emerging cortical representations of visual attributes (2003) Nature, 425, pp. 954-956; Tsodyks, M., Linking spontaneous activity of single cortical neurons and the underlying functional architecture (1999) Science, 286, pp. 1943-1946; Sapir, A., Brain signals for spatial attention predict performance in a motion discrimination task (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 17810-17815; Weissman, D.H., The neural bases of momentary lapses in attention (2006) Nat. Neurosci., 9, pp. 971-978; Busch, N.A., The phase of ongoing EEG oscillations predicts visual perception (2009) J. Neurosci., 29, pp. 7869-7876; Smith, M.L., Perceptual moments of conscious visual experience inferred from oscillatory brain activity (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 5626-5631; Berry, S.D., Thompson, R.F., Prediction of learning rate from the hippocampal electroencephalogram (1978) Science, 200, pp. 1298-1300; Pyka, M., Impact of working memory load on FMRI resting state pattern in subsequent resting phases (2009) PLoS One, 4, pp. e7198; Lowe, M.J., Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections (2000) Neuroimage, 12, pp. 582-587; Schneider, F., The resting brain and our self: self-relatedness modulates resting state neural activity in cortical midline structures (2008) Neuroscience, 157, pp. 120-131; Lewis, C.M., Learning sculpts the spontaneous activity of the resting human brain (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 17558-17563; Han, F., Reverberation of recent visual experience in spontaneous cortical waves (2008) Neuron, 60, pp. 321-327; Newton, A.T., Task demand modulation of steady-state functional connectivity to primary motor cortex (2007) Hum. Brain Mapp., 28, pp. 663-672; Albert, N.B., The resting human brain and motor learning (2009) Curr. Biol., 19, pp. 1023-1027; Christoff, K., Experience sampling during fMRI reveals default network and executive system contributions to mind wandering (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 8719-8724; Mason, M.F., Wandering minds: the default network and stimulus-independent thought (2007) Science, 315, pp. 393-395; Fair, D.A., The maturing architecture of the brain's default network (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 4028-4032; Fair, D.A., Development of distinct control networks through segregation and integration (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13507-13512; Fransson, P., Resting-state networks in the infant brain (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 15531-15536; Alcaro, A., Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach (2010) Neurosci. Biobehav. Rev., 34, pp. 592-605; Grimm, S., Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects (2009) Neuropsychopharmacology, 34 (4), pp. 932-943; Fox, M.D., The global signal and observed anticorrelated resting state brain networks (2009) J. Neurophysiol., 101, pp. 3270-3283; Northoff, G., Self-referential processing in our brain - a meta-analysis of imaging studies on the self (2006) Neuroimage, 31, pp. 440-457; He, B.J., Raichle, M.E., The fMRI signal, slow cortical potential and consciousness (2009) Trends Cogn. Sci., 13, pp. 302-309
PY - 2010
Y1 - 2010
N2 - Studies in animals and humans have demonstrated intrinsic activity in the brain during the resting state. The concept of the default-mode network (DMN) - a set of brain regions in which resting-state activity (RSA) activity is reduced in response to external stimuli - recently raised much controversy concerning the psychological correlates of RSA. However, it remains unclear how RSA interacts with stimulus-induced activity. Here we review studies in humans and animals that address how RSA interacts with stimulus-induced activity; we also discuss, conversely, how stimulus-induced activity can modulate RSA. Psychologically, the rest-stimulus interaction is relevant to predicting subsequent behavioral and mental states. We conclude that a better understanding of the rest-stimulus interaction is likely to be crucial to the elucidation of the brain's contribution to mental states. © 2010 Elsevier Ltd.
AB - Studies in animals and humans have demonstrated intrinsic activity in the brain during the resting state. The concept of the default-mode network (DMN) - a set of brain regions in which resting-state activity (RSA) activity is reduced in response to external stimuli - recently raised much controversy concerning the psychological correlates of RSA. However, it remains unclear how RSA interacts with stimulus-induced activity. Here we review studies in humans and animals that address how RSA interacts with stimulus-induced activity; we also discuss, conversely, how stimulus-induced activity can modulate RSA. Psychologically, the rest-stimulus interaction is relevant to predicting subsequent behavioral and mental states. We conclude that a better understanding of the rest-stimulus interaction is likely to be crucial to the elucidation of the brain's contribution to mental states. © 2010 Elsevier Ltd.
KW - behavior
KW - brain function
KW - brain region
KW - decision making
KW - human
KW - mental performance
KW - neuromodulation
KW - nonhuman
KW - prediction
KW - priority journal
KW - rest
KW - review
KW - stimulus response
KW - working memory
KW - anatomy and histology
KW - animal
KW - brain
KW - brain mapping
KW - motor activity
KW - nerve cell network
KW - nerve tract
KW - physiology
KW - psychology
KW - Animals
KW - Brain
KW - Brain Mapping
KW - Humans
KW - Motor Activity
KW - Nerve Net
KW - Neural Pathways
KW - Rest
U2 - 10.1016/j.tins.2010.02.006
DO - 10.1016/j.tins.2010.02.006
M3 - Article
C2 - 20226543
SN - 0166-2236
VL - 33
SP - 277
EP - 284
JO - Trends in Neurosciences
JF - Trends in Neurosciences
IS - 6
ER -