Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1) is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8), a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF--stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs). Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

Original languageEnglish
Article number917837
JournalJournal of Biomedicine and Biotechnology
Publication statusPublished - 2009

ASJC Scopus subject areas

  • Biotechnology
  • Molecular Medicine
  • Genetics
  • Molecular Biology
  • Health, Toxicology and Mutagenesis
  • Medicine(all)


Dive into the research topics of 'Reduction of monocyte chemoattractant protein-1 and interleukin-8 levels by ticlopidine in TNF-α stimulated human umbilical vein endothelial cells'. Together they form a unique fingerprint.

Cite this