Abstract
Previously, we designed a ribozyme that targets the H-ras oncogene at the 12th codon mutation site (Chang et al., 1997). Ribozymes have antisense molecule and site-specific ribonuclease potential. In this study, an adenoviral vector was used to transduce the H-ras ribozyme into laryngeal cancer cells (HEp-2). This served to downregulate the H-ras gene expression in which this ribozyme performed antisense activity due to HEp-2 cells containing wild-type alleles in the 12th H-ras codon. Together, our data demonstrated that the recombinant adenovirus encoding H-ras ribozyme can be broadly regarded as a cytotoxic gene therapy in laryngeal cancer cells regardless of containing wild-type or mutant ras gene. In addition, the mechanism through which the H-ras ribozyme inhibited tumor growth was apoptosis and involved both caspase- and mitochondria-mediated pathways. The activators caspase-8 and -9 as well as the effector caspase-3 in the induction phase of apoptosis and the substrate PARP of caspase-3 in the execution phase were activated 48 h following the H-ras ribozyme treatment. Mitochondrial events characterized by the production of superoxide anion and the release of cytochrome c started at 24 h. Mitochondrial transmembrane potential loss occurred 48 h after the ribozyme treatment. However, Bcl-2 delayed cytochrome c release to the cytosol, but it could not protect the apoptosis effect, suggesting that cytochrome c release from mitochondria may not play a role in H-ras ribozyme-induced apoptosis.
Original language | English |
---|---|
Pages (from-to) | 805-814 |
Number of pages | 10 |
Journal | Biochemical and Biophysical Research Communications |
Volume | 298 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2002 |
Externally published | Yes |
Keywords
- Apoptosis
- Caspase
- H-ras
- Mitochondria
ASJC Scopus subject areas
- Molecular Biology
- Biophysics
- Biochemistry
- Cell Biology