Abstract
Brown adipocytes (BAs) exhibit an energy-expending signature that is important in balancing metabolic homeostasis. In this study, results of transcriptome analyses revealed the reprogrammed splicing profile of the PR domain containing 16 (PRDM16) gene, a key transcription factor involved in brown adipogenesis, throughout development of wild-type brown adipose tissues (BATs). Moreover, discriminative splicing patterns of PRDM16 transcripts were noted in embryonic and postnatal RBM4a−/− BATs. Overexpression of RBM4a enhanced the relative levels of PRDM16-ex 16 transcripts by simultaneously interacting with exonic and intronic CU elements, which encoded the PRDM16S isoform containing a distinct C-terminus. The presence of the overexpressed PRDM16S isoform showed a stronger effect than the overexpressed PRDM16L isoform on enhancing transcriptional activity of the RBM4a and the PGC-1α promoter. Overexpression of the PRDM16S isoform exerted more-prominent effects on enhancing the BAT-related gene program and energy expenditure compared to those of PRDM16L-overexpressing cells. Our studies demonstrated that RBM4a-regulated alternative splicing constituted another regulatory mechanism for strengthening the influence of PRDM16 on the development of brown adipocytes.
Original language | English |
---|---|
Pages (from-to) | 1515-1525 |
Number of pages | 11 |
Journal | Biochimica et Biophysica Acta - Molecular Cell Research |
Volume | 1865 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 1 2018 |
Keywords
- Alternative splicing
- Brown adipocyte
- PRDM16
- RBM4a
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology