TY - JOUR
T1 - Rapid On-Site AI-Assisted Grading for Lung Surgery Based on Optical Coherence Tomography
AU - Liu, Hung Chang
AU - Lin, Miao Hui
AU - Chang, Wei Chin
AU - Zeng, Rui Cheng
AU - Wang, Yi Min
AU - Sun, Chia Wei
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/11
Y1 - 2023/11
N2 - The determination of resection extent traditionally relies on the microscopic invasiveness of frozen sections (FSs) and is crucial for surgery of early lung cancer with preoperatively unknown histology. While previous research has shown the value of optical coherence tomography (OCT) for instant lung cancer diagnosis, tumor grading through OCT remains challenging. Therefore, this study proposes an interactive human–machine interface (HMI) that integrates a mobile OCT system, deep learning algorithms, and attention mechanisms. The system is designed to mark the lesion’s location on the image smartly and perform tumor grading in real time, potentially facilitating clinical decision making. Twelve patients with a preoperatively unknown tumor but a final diagnosis of adenocarcinoma underwent thoracoscopic resection, and the artificial intelligence (AI)-designed system mentioned above was used to measure fresh specimens. Results were compared to FSs benchmarked on permanent pathologic reports. Current results show better differentiating power among minimally invasive adenocarcinoma (MIA), invasive adenocarcinoma (IA), and normal tissue, with an overall accuracy of 84.9%, compared to 20% for FSs. Additionally, the sensitivity and specificity, the sensitivity and specificity were 89% and 82.7% for MIA and 94% and 80.6% for IA, respectively. The results suggest that this AI system can potentially produce rapid and efficient diagnoses and ultimately improve patient outcomes.
AB - The determination of resection extent traditionally relies on the microscopic invasiveness of frozen sections (FSs) and is crucial for surgery of early lung cancer with preoperatively unknown histology. While previous research has shown the value of optical coherence tomography (OCT) for instant lung cancer diagnosis, tumor grading through OCT remains challenging. Therefore, this study proposes an interactive human–machine interface (HMI) that integrates a mobile OCT system, deep learning algorithms, and attention mechanisms. The system is designed to mark the lesion’s location on the image smartly and perform tumor grading in real time, potentially facilitating clinical decision making. Twelve patients with a preoperatively unknown tumor but a final diagnosis of adenocarcinoma underwent thoracoscopic resection, and the artificial intelligence (AI)-designed system mentioned above was used to measure fresh specimens. Results were compared to FSs benchmarked on permanent pathologic reports. Current results show better differentiating power among minimally invasive adenocarcinoma (MIA), invasive adenocarcinoma (IA), and normal tissue, with an overall accuracy of 84.9%, compared to 20% for FSs. Additionally, the sensitivity and specificity, the sensitivity and specificity were 89% and 82.7% for MIA and 94% and 80.6% for IA, respectively. The results suggest that this AI system can potentially produce rapid and efficient diagnoses and ultimately improve patient outcomes.
KW - deep learning (DL)
KW - interactive human–machine interface (interactive HMI)
KW - lung cancer
KW - optical coherence tomography (OCT)
KW - tumor grading
UR - http://www.scopus.com/inward/record.url?scp=85178105353&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85178105353&partnerID=8YFLogxK
U2 - 10.3390/cancers15225388
DO - 10.3390/cancers15225388
M3 - Article
AN - SCOPUS:85178105353
SN - 2072-6694
VL - 15
JO - Cancers
JF - Cancers
IS - 22
M1 - 5388
ER -