Quantitative analysis and discrimination of partially fermented teas from different origins using visible/near-infrared spectroscopy coupled with chemometrics

Tsung Hsin Wu, I. Chun Tung, Han Chun Hsu, Chih Chun Kuo, Jenn How Chang, Suming Chen, Chao Yin Tsai, Yung Kun Chuang

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Partially fermented tea such as oolong tea is a popular drink worldwide. Preventing fraud in partially fermented tea has become imperative to protect producers and consumers from possible economic losses. Visible/near-infrared (VIS/NIR) spectroscopy integrated with stepwise multiple linear regression (SMLR) and support vector machine (SVM) methods were used for origin discrimination of partially fermented tea from Vietnam, China, and different production areas in Taiwan using the full visible NIR wavelength range (400–2498 nm). The SMLR and SVM models achieved satisfactory results. Models using data from chemical constituents’ specific wavelength ranges exhibited a high correlation with the spectra of teas, and the SMLR analyses improved discrimination of the types and origins when performing SVM analyses. The SVM models’ identification accuracies regarding different production areas in Taiwan were effectively enhanced using a combination of the data within specific wavelength ranges of several constituents. The accuracy rates were 100% for the discrimination of types, origins, and production areas of tea in the calibration and prediction sets using the optimal SVM models integrated with the specific wavelength ranges of the constituents in tea. NIR could be an effective tool for rapid, nondestructive, and accurate inspection of types, origins, and production areas of teas.

Original languageEnglish
Article number5451
Pages (from-to)1-17
Number of pages17
JournalSensors (Switzerland)
Volume20
Issue number19
DOIs
Publication statusPublished - Sept 23 2020

Keywords

  • Near-infrared spectroscopy
  • Origin
  • Partially fermented tea
  • Production area
  • Support vector machine

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Quantitative analysis and discrimination of partially fermented teas from different origins using visible/near-infrared spectroscopy coupled with chemometrics'. Together they form a unique fingerprint.

Cite this