TY - JOUR
T1 - Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma
AU - Ho, Wan Ling
AU - Hsu, Wen Ming
AU - Huang, Min Chuan
AU - Kadomatsu, Kenji
AU - Nakagawara, Akira
N1 - Funding Information:
This work was supported by Ministry of Science and Technology, R.O.C. (MOST 103-2314-B-341-005 to Dr. Wan-Ling Ho; NSC 99-2628-B-002-056-MY3 and NSC 102-2628-B-002-031-MY2 to Dr. Wen-Ming Hsu; MOST 104-2320-B-002-068-MY3 to Dr. Min-Chuan Huang), National Taiwan University (NTU.101-R7808 to Dr. Min-Chuan Huang), National Taiwan University Hospital (NTUH-101-S1787 and NTUH-103-S2388 to Dr. Wen-Ming Hsu), Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (JST CREST) (to Dr. Kenji Kadomatsu), and Japan Agency for Medical Research and Development (AMED) (Tailor-made Medical Treatment Program) (to Dr. Kenji Kadomatsu).
Publisher Copyright:
© 2016 The Author(s).
PY - 2016/9/29
Y1 - 2016/9/29
N2 - Glycosylation is the most complex post-translational modification of proteins. Altered glycans on the tumor- and host-cell surface and in the tumor microenvironment have been identified to mediate critical events in cancer pathogenesis and progression. Tumor-associated glycan changes comprise increased branching of N-glycans, higher density of O-glycans, generation of truncated versions of normal counterparts, and generation of unusual forms of terminal structures arising from sialylation and fucosylation. The functional role of tumor-associated glycans (Tn, sTn, T, and sLea/x) is dependent on the interaction with lectins. Lectins are expressed on the surface of immune cells and endothelial cells or exist as extracellular matrix proteins and soluble adhesion molecules. Expression of tumor-associated glycans is involved in the dysregulation of glycogenes, which mainly comprise glycosyltransferases and glycosidases. Furthermore, genetic and epigenetic mechanisms on many glycogenes are associated with malignant transformation. With better understanding of all aspects of cancer-cell glycomics, many tumor-associated glycans have been utilized for diagnostic, prognostic, and therapeutic purposes. Glycan-based therapeutics has been applied to cancers from breast, lung, gastrointestinal system, melanomas, and lymphomas but rarely to neuroblastomas (NBs). The success of anti-disialoganglioside (GD2, a glycolipid antigen) antibodies sheds light on glycan-based therapies for NB and also suggests the possibility of protein glycosylation-based therapies for NB. This review summarizes our understanding of cancer glycobiology with a focus of how protein glycosylation and associated glycosyltransferases affect cellular behaviors and treatment outcome of various cancers, especially NB. Finally, we highlight potential applications of glycosylation in drug and cancer vaccine development for NB.
AB - Glycosylation is the most complex post-translational modification of proteins. Altered glycans on the tumor- and host-cell surface and in the tumor microenvironment have been identified to mediate critical events in cancer pathogenesis and progression. Tumor-associated glycan changes comprise increased branching of N-glycans, higher density of O-glycans, generation of truncated versions of normal counterparts, and generation of unusual forms of terminal structures arising from sialylation and fucosylation. The functional role of tumor-associated glycans (Tn, sTn, T, and sLea/x) is dependent on the interaction with lectins. Lectins are expressed on the surface of immune cells and endothelial cells or exist as extracellular matrix proteins and soluble adhesion molecules. Expression of tumor-associated glycans is involved in the dysregulation of glycogenes, which mainly comprise glycosyltransferases and glycosidases. Furthermore, genetic and epigenetic mechanisms on many glycogenes are associated with malignant transformation. With better understanding of all aspects of cancer-cell glycomics, many tumor-associated glycans have been utilized for diagnostic, prognostic, and therapeutic purposes. Glycan-based therapeutics has been applied to cancers from breast, lung, gastrointestinal system, melanomas, and lymphomas but rarely to neuroblastomas (NBs). The success of anti-disialoganglioside (GD2, a glycolipid antigen) antibodies sheds light on glycan-based therapies for NB and also suggests the possibility of protein glycosylation-based therapies for NB. This review summarizes our understanding of cancer glycobiology with a focus of how protein glycosylation and associated glycosyltransferases affect cellular behaviors and treatment outcome of various cancers, especially NB. Finally, we highlight potential applications of glycosylation in drug and cancer vaccine development for NB.
KW - Cancer
KW - Glycan-based therapeutics
KW - Glycosyltransferase
KW - Lectin
KW - Neuroblastoma
KW - Protein glycosylation
KW - Treatment
UR - http://www.scopus.com/inward/record.url?scp=84989824735&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84989824735&partnerID=8YFLogxK
U2 - 10.1186/s13045-016-0334-6
DO - 10.1186/s13045-016-0334-6
M3 - Review article
C2 - 27686492
AN - SCOPUS:84989824735
SN - 1756-8722
VL - 9
SP - 1
EP - 15
JO - Journal of Hematology and Oncology
JF - Journal of Hematology and Oncology
IS - 1
ER -