Protein Arginine Methyltransferase 5 Contributes to Paclitaxel-Induced Neuropathic Pain by Activating Transient Receptor Potential Vanilloid 1 Epigenetic Modification in Dorsal Root Ganglion

Chou Ming Yeh, Cheng Yuan Lai, Hsien Yu Peng, Tzer Bin Lin, Dylan Chou, Hsueh Hsiao Wang, Po Sheng Yang, Jen Kun Cheng, Yun Chih Peng, Ming Chun Hsieh

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

BACKGROUND: Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia. METHODS: Sprague-Dawley rats were intraperitoneally given PTX to induce neuropathic pain. Biochemical analyses were conducted to measure the protein expression levels in the dorsal root ganglion (DRG) of the animals. The von Frey test and hot plate test were used to evaluate nociceptive behaviors. RESULTS: PTX increased the PRMT5 (mean difference [MD]: 0.68, 95% confidence interval [CI], 0.88-0.48; P <.001 for vehicle)-mediated deposition of histone H3R2 dimethyl symmetric (H3R2me2s) at the transient receptor potential vanilloid 1 (Trpv1) promoter in the DRG. PRMT5-induced H3R2me2s recruited WD repeat domain 5 (WDR5) to increase trimethylation of lysine 4 on histone H3 (H3K4me3) at Trpv1 promoters, thus resulting in TRPV1 transcriptional activation (MD: 0.65, 95% CI, 0.82-0.49; P <.001 for vehicle) in DRG in PTX-induced neuropathic pain. Moreover, PTX increased the activity of NADPH oxidase 4 (NOX4) (MD: 0.66, 95% CI, 0.81-0.51; P <.001 for vehicle), PRMT5-induced H3R2me2s, and WDR5-mediated H3K4me3 in the DRG in PTX-induced neuropathic pain. Pharmacological antagonism and the selective knockdown of PRMT5 in DRG neurons completely blocked PRMT5-mediated H3R2me2s, WDR5-mediated H3K4me3, or TRPV1 expression and neuropathic pain development after PTX injection. Remarkably, NOX4 inhibition not only attenuated allodynia behavior and reversed the above-mentioned signaling but also reversed NOX4 upregulation via PTX. CONCLUSIONS: Thus, the NOX4/PRMT5-associated epigenetic mechanism in DRG has a dominant function in the transcriptional activation of TRPV1 in PTX-induced neuropathic pain.

Original languageEnglish
Pages (from-to)1107-1119
Number of pages13
JournalAnesthesia and Analgesia
Volume138
Issue number5
DOIs
Publication statusPublished - May 1 2024

ASJC Scopus subject areas

  • Anesthesiology and Pain Medicine

Fingerprint

Dive into the research topics of 'Protein Arginine Methyltransferase 5 Contributes to Paclitaxel-Induced Neuropathic Pain by Activating Transient Receptor Potential Vanilloid 1 Epigenetic Modification in Dorsal Root Ganglion'. Together they form a unique fingerprint.

Cite this