TY - JOUR
T1 - Protective effects of L-arginine supplementation against exhaustive exercise-induced oxidative stress in young rat tissues
AU - Huang, Chi Chang
AU - Lin, Tien Jen
AU - Lu, Yi Fa
AU - Chen, Chun Chieh
AU - Huang, Chih Yang
AU - Lin, Wan Teng
PY - 2009
Y1 - 2009
N2 - Recently, we showed that L-arginine (L-Arg) supplementation could attenuate acute exercise-induced oxidative and inflammatory stress in aging rats. In this study, we investigate whether L-Arg supplementation protects cellular oxidative stress, inflammation, or the mitochondrial DNA 4834-bp large deletion (mtDNA 4834 deletion) in 14-week-old young rats tissues during exhaustive exercise. Rats were randomly divided into four groups: sedentary control (SC); SC with L-Arg treatment (SC+Arg); exhaustive exercise (E); and exhaustive exercise with L-Arg treatment (E+Arg). Rats in the SC+Arg and E+Arg groups received supplemental 2% L-Arg diet. Rats in groups E and E+Arg performed an exhaustive running test on a treadmill. The results showed a significant increase in xanthine oxidase (XO) and myeloperoxidase (MPO) activities and lipid peroxide (malondialdehyde; MDA) levels of muscular, hepatic, and renal tissues in exercised rats as compared with sedentary rats. The increased XO, MPO, and MDA levels of these tissues significantly decreased in exercised rats supplemented with L-Arg. However, exhaustive exercise had no effect on mtDNA 4834 deletions of muscular and hepatic tissues. The activities of creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine (CRE), lactate, uric acid, non-esterified fatty acid (NEFA), and D-3-hydroxybutyrate in the plasma significantly increased in the exercised rats compared with the sedentary rats, while the CK, lactate and uric acid levels in the plasma significantly decreased in L-Arg-supplemented exercised rats. These findings suggest that L-Arg supplementation reduces the oxidative damage to and inflammatory response in skeletal muscles, the liver, and kidneys caused by exhaustive exercise in young rats.
AB - Recently, we showed that L-arginine (L-Arg) supplementation could attenuate acute exercise-induced oxidative and inflammatory stress in aging rats. In this study, we investigate whether L-Arg supplementation protects cellular oxidative stress, inflammation, or the mitochondrial DNA 4834-bp large deletion (mtDNA 4834 deletion) in 14-week-old young rats tissues during exhaustive exercise. Rats were randomly divided into four groups: sedentary control (SC); SC with L-Arg treatment (SC+Arg); exhaustive exercise (E); and exhaustive exercise with L-Arg treatment (E+Arg). Rats in the SC+Arg and E+Arg groups received supplemental 2% L-Arg diet. Rats in groups E and E+Arg performed an exhaustive running test on a treadmill. The results showed a significant increase in xanthine oxidase (XO) and myeloperoxidase (MPO) activities and lipid peroxide (malondialdehyde; MDA) levels of muscular, hepatic, and renal tissues in exercised rats as compared with sedentary rats. The increased XO, MPO, and MDA levels of these tissues significantly decreased in exercised rats supplemented with L-Arg. However, exhaustive exercise had no effect on mtDNA 4834 deletions of muscular and hepatic tissues. The activities of creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine (CRE), lactate, uric acid, non-esterified fatty acid (NEFA), and D-3-hydroxybutyrate in the plasma significantly increased in the exercised rats compared with the sedentary rats, while the CK, lactate and uric acid levels in the plasma significantly decreased in L-Arg-supplemented exercised rats. These findings suggest that L-Arg supplementation reduces the oxidative damage to and inflammatory response in skeletal muscles, the liver, and kidneys caused by exhaustive exercise in young rats.
KW - Exhaustive exercise
KW - L-arginine
KW - Mitochondrial DNA deletion
KW - Myeloperoxidase
KW - Oxidative stress
KW - Xanthine oxidase
UR - http://www.scopus.com/inward/record.url?scp=73349113175&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=73349113175&partnerID=8YFLogxK
U2 - 10.4077/CJP.2009.AMH068
DO - 10.4077/CJP.2009.AMH068
M3 - Article
C2 - 20034235
AN - SCOPUS:73349113175
SN - 0304-4920
VL - 52
SP - 306
EP - 315
JO - Chinese Journal of Physiology
JF - Chinese Journal of Physiology
IS - 5
ER -