Abstract
Two systems of antibody-drug conjugates (ADCs), noncleavable H32-DM1 and cleavable H32-VCMMAE, were developed by using different linkers and drugs attached to the antiHER2 antibody H32, which is capable of cell internalization. Activated functional groups, including an N-hydroxysuccinimidyl (NHS) ester and a maleimide, were utilized to make the ADCs. Mass spectrometry, hydrophobic interaction chromatography, polyacrylamide gel electrophoresis, and in vitro cell assays were performed to analyze and optimize the ADCs. Several H32-VCMMAE ADCs were established with higher DARs and greater synthetic yields without compromising potency. The anticancer efficacy of H32-DM1 was 2- to 8-fold greater than that of Kadcyla®. The efficacy of H32-VCMMAE was in turn better than that of H32-DM1. The anticancer efficacy of these ADCs against N87, SK-BR-3 and BT474 cells was in the following order: H32-VCMMAE series > H32-DM1 series > Kadcyla®. The optimal DAR for H32-VCMMAE was found to be 6.6, with desirable attributes including good cell penetration, a releasable payload in cancer cells, and high potency. Our results demonstrated the potential of H32-VCMMAE as a good ADC candidate.
Original language | English |
---|---|
Article number | e0239813 |
Journal | PLoS ONE |
Volume | 15 |
Issue number | 9 September |
DOIs | |
Publication status | Published - Sept 2020 |
Externally published | Yes |
ASJC Scopus subject areas
- General