TY - JOUR
T1 - Prediction of Spasticity through Upper Limb Active Range of Motion in Stroke Survivors
T2 - A Generalized Estimating Equation Model
AU - Adeel, Muhammad
AU - Peng, Chih Wei
AU - Lee, I. Jung
AU - Lin, Bor Shing
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/11
Y1 - 2023/11
N2 - Background: We aim to study the association between spasticity and active range of motion (ROM) during four repetitive functional tasks such as cone stacking (CS), fast flexion–extension (FFE), fast ball squeezing (FBS), and slow ball squeezing (SBS), and predicted spasticity models. Methods: An experimental study with control and stroke groups was conducted in a Medical Center. A total of sixty-four participants, including healthy control (n = 22; average age (years) = 54.68 ± 9.63; male/female = 12/10) and chronic stroke survivors (n = 42; average age = 56.83 ± 11.74; male/female = 32/10) were recruited. We employed a previously developed smart glove device mounted with multiple inertial measurement unit (IMU) sensors on the upper limbs of healthy and chronic stroke individuals. The recorded ROMs were used to predict subjective spasticity through generalized estimating equations (GEE) for the affected side. Results: The models have significant (p ≤ 0.05 *) prediction of spasticity for the elbow, thumb, index, middle, ring, and little fingers. Overall, during SBS and FFE activities, the maximum number of upper limb joints attained the greater average ROMs. For large joints, the elbow during CS and the wrist during FFE have the highest average ROMs, but smaller joints and the wrist have covered the highest average ROMs during FFE, FBS, and SBS activities. Conclusions: Thus, it is concluded that CS can be used for spasticity assessment of the elbow, FFE for the wrist, and SBS, FFE, and FBS activities for the thumb and finger joints in chronic stroke survivors.
AB - Background: We aim to study the association between spasticity and active range of motion (ROM) during four repetitive functional tasks such as cone stacking (CS), fast flexion–extension (FFE), fast ball squeezing (FBS), and slow ball squeezing (SBS), and predicted spasticity models. Methods: An experimental study with control and stroke groups was conducted in a Medical Center. A total of sixty-four participants, including healthy control (n = 22; average age (years) = 54.68 ± 9.63; male/female = 12/10) and chronic stroke survivors (n = 42; average age = 56.83 ± 11.74; male/female = 32/10) were recruited. We employed a previously developed smart glove device mounted with multiple inertial measurement unit (IMU) sensors on the upper limbs of healthy and chronic stroke individuals. The recorded ROMs were used to predict subjective spasticity through generalized estimating equations (GEE) for the affected side. Results: The models have significant (p ≤ 0.05 *) prediction of spasticity for the elbow, thumb, index, middle, ring, and little fingers. Overall, during SBS and FFE activities, the maximum number of upper limb joints attained the greater average ROMs. For large joints, the elbow during CS and the wrist during FFE have the highest average ROMs, but smaller joints and the wrist have covered the highest average ROMs during FFE, FBS, and SBS activities. Conclusions: Thus, it is concluded that CS can be used for spasticity assessment of the elbow, FFE for the wrist, and SBS, FFE, and FBS activities for the thumb and finger joints in chronic stroke survivors.
KW - assessment
KW - chronic stroke
KW - limitation
KW - range of motion
KW - upper limb
UR - http://www.scopus.com/inward/record.url?scp=85178151690&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85178151690&partnerID=8YFLogxK
U2 - 10.3390/bioengineering10111273
DO - 10.3390/bioengineering10111273
M3 - Article
AN - SCOPUS:85178151690
SN - 2306-5354
VL - 10
JO - Bioengineering
JF - Bioengineering
IS - 11
M1 - 1273
ER -