Pgc-1α as a pivotal factor in lipid and metabolic regulation

Ching Feng Cheng, Hui Chen Ku, Heng Lin

Research output: Contribution to journalReview articlepeer-review

315 Citations (Scopus)

Abstract

Traditionally, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a 91 kDa transcription factor, regulates lipid metabolism and long-chain fatty acid oxidation by upregulating the expression of several genes of the tricarboxylic acid cycle and the mitochondrial fatty acid oxidation pathway. In addition, PGC-1α regulates the expression of mitochondrial genes to control mitochondria DNA replication and cellular oxidative metabolism. Recently, new insights showed that several myokines such as irisin and myostatin are epigenetically regulated by PGC-1α in skeletal muscles, thereby modulating systemic energy balance, with marked expansion of mitochondrial volume density and oxidative capacity in healthy or diseased myocardia. In addition, in our studies evaluating whether PGC-1α overexpression in epicardial adipose tissue can act as a paracrine organ to improve or repair cardiac function, we found that overexpression of hepatic PGC-1α increased hepatic fatty acid oxidation and decreased triacylglycerol storage and secretion in vivo and in vitro. In this review, we discuss recent studies showing that PGC-1α may regulate mitochondrial fusion–fission homeostasis and affect the renal function in acute or chronic kidney injury. Furthermore, PGC-1α is an emerging protein with a biphasic role in cancer, acting both as a tumor suppressor and a tumor promoter and thus representing a new and unresolved topic for cancer biology studies. In summary, this review paper demonstrates that PGC-1α plays a central role in coordinating the gene expression of key components of mitochondrial biogenesis and as a critical metabolic regulator in many vital organs, including white and brown adipose tissue, skeletal muscle, heart, liver, and kidney.

Original languageEnglish
Article number3447
JournalInternational Journal of Molecular Sciences
Volume19
Issue number11
DOIs
Publication statusPublished - Nov 2 2018

Keywords

  • Adipose tissue
  • Metabolic homeostasis
  • Mitochondria
  • PGC-1α

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Pgc-1α as a pivotal factor in lipid and metabolic regulation'. Together they form a unique fingerprint.

Cite this